Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation

Little is known about the effect of ionic liquids (ILs) on the structure of soil microbial communities and resulting biodiversity. Therefore, we studied the influence of six trihexyl(tetradecyl)phosphonium ILs (with either bromide or various organic anions) at sublethal concentrations on the structure of microbial community present in an urban park soil in 100-day microcosm experiments. The biodiversity decreased in all samples (Shannon's index decreased from 1.75 down to 0.74 and OTU's number decreased from 1399 down to 965) with the largest decrease observed in the microcosms spiked with ILs where biodegradation extent was higher than 80%. (i.e. [P66614][Br] and [P66614][2,4,4]). Despite this general decrease in biodiversity, which can be explained by ecotoxic effect of the ILs, the microbial community in the microcosms was enriched with Gram-negative hydrocarbon-degrading genera e.g. Sphingomonas. It is hypothesized that, in addition to toxicity, the observed decrease in biodiversity and change in the microbial community structure may be explained by the primary biodegradation of the ILs or their metabolites by the mentioned genera, which outcompeted other microorganisms unable to degrade ILs or their metabolites. Thus, the introduction of phosphonium-based ILs into soils at sub-lethal concentrations may result not only in a decrease in biodiversity due to toxic effects, but also in enrichment with ILs-degrading bacteria.

General information
Publication status: Published
Organisations: Department of Management Engineering, Quantitative Sustainability Assessment, Poznan University of Technology, Polish Academy of Sciences, Poznan University Of Life Sciences, Helmholtz Centre for Environmental Research
Pages: 157-164
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Ecotoxicology and Environmental Safety
Volume: 147
ISSN (Print): 0147-6513
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 4.88 SJR 1.174 SNIP 1.524
Web of Science (2018): Impact factor 4.527
Web of Science (2018): Indexed yes
Original language: English
Keywords: Biodegradation, Biodiversity, Illumina NGS, Ionic liquids, Microbial community, Toxicity
DOIs: 10.1016/j.ecoenv.2017.08.026
Source: FindIt
Source-ID: 2373378567
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review