Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation

Mateusz Sydow, Mikołaj Owsianiak, Grzegorz Framski, Marta Woźniak-Karczewska, Agnieszka Piotrowska-Cyplik, Łukasz Ławniczak, Alicja Szulc, Agnieszka Zgoła-Grześkowiak, Hermann J Heipieper, Łukasz Chrzanowski*

*Corresponding author for this work

    Research output: Contribution to journalJournal articleResearchpeer-review

    289 Downloads (Pure)


    Little is known about the effect of ionic liquids (ILs) on the structure of soil microbial communities and resulting biodiversity. Therefore, we studied the influence of six trihexyl(tetradecyl)phosphonium ILs (with either bromide or various organic anions) at sublethal concentrations on the structure of microbial community present in an urban park soil in 100-day microcosm experiments. The biodiversity decreased in all samples (Shannon's index decreased from 1.75 down to 0.74 and OTU's number decreased from 1399 down to 965) with the largest decrease observed in the microcosms spiked with ILs where biodegradation extent was higher than 80%. (i.e. [P66614][Br] and [P66614][2,4,4]). Despite this general decrease in biodiversity, which can be explained by ecotoxic effect of the ILs, the microbial community in the microcosms was enriched with Gram-negative hydrocarbon-degrading genera e.g. Sphingomonas. It is hypothesized that, in addition to toxicity, the observed decrease in biodiversity and change in the microbial community structure may be explained by the primary biodegradation of the ILs or their metabolites by the mentioned genera, which outcompeted other microorganisms unable to degrade ILs or their metabolites. Thus, the introduction of phosphonium-based ILs into soils at sub-lethal concentrations may result not only in a decrease in biodiversity due to toxic effects, but also in enrichment with ILs-degrading bacteria.
    Original languageEnglish
    JournalEcotoxicology and Environmental Safety
    Pages (from-to)157-164
    Publication statusPublished - 2018


    • Biodegradation
    • Biodiversity
    • Illumina NGS
    • Ionic liquids
    • Microbial community
    • Toxicity


    Dive into the research topics of 'Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation'. Together they form a unique fingerprint.

    Cite this