Biodegradation of phthalate esters during the mesophilic anaerobic digestion of sludge

Hariklia N. Gavala, Felipe Alatriste-Mondragon, R. Iranpour, Birgitte Kiær Ahring

    Research output: Contribution to journalJournal articleResearchpeer-review

    Abstract

    Phthalic acid esters (PAE) are commonly found in the sludge generated in the wastewater treatment plants. Anaerobic digestion followed by land application is a common treatment and disposal practice of sludge. To date, many studies exist on the anaerobic biodegradation rates of PAE, especially of the easily biodegradable ones, whereas the higher molecular weight PAE have reported to be non-biodegradable under methanogenic conditions. Furthermore, there is no information on the effect of the PAE on the performance of the anaerobic digesters treating sludge. In this study, the anaerobic biodegradation of di-n-butyl phthalate (DBP), di-ethyl phthalate (DEP) and di-ethylhexyl phthalate (DEHP) was investigated and their relative rates of anaerobic degradation were calculated. Also, the biological removal of PAE during the anaerobic digestion of sludge in bench-scale digesters was investigated using DBP and DEHP as model compounds of one biodegradable and one recalcitrant PAE respectively. The degradation of all the PAE tested in this study (DEP, DBP and DEHP) is adequately described by first-order kinetics. Batch and continuous experiments showed that DEP and DBP present in sludge are rapidly degraded under mesophilic anaerobic conditions (a first-order kinetic constant of 8.04 x 10(-2) and 13.69 x 10(-2) -4.35 day(-1) respectively) while DEHP is degraded at a rate between one to two orders of magnitude lower (0.35 x 10(-2) -3.59 x 10(-2) day(-1)). It is of high significance that experiments with anaerobic sludge of different origin (US and Europe) showed that degradation of DEHP occurs under methanogenic conditions. Accumulation of high levels of DEHP (more than 60 mg/l) in the anaerobic digester has a negative effect on DBP and DEHP removal rates as well as on the biogas production.
    Original languageEnglish
    JournalChemosphere
    Volume52
    Issue number4
    Pages (from-to)673-682
    ISSN0045-6535
    Publication statusPublished - 2003

    Fingerprint Dive into the research topics of 'Biodegradation of phthalate esters during the mesophilic anaerobic digestion of sludge'. Together they form a unique fingerprint.

    Cite this