Abstract
Microfluidic biochips integrate different biochemical analysis functionalities (e.g., dispensers, filters, mixers, separators, detectors) on-chip, miniaturizing the macroscopic chemical and biological processes often processed by lab-robots, to a sub-millimeter scale. These microsystems offer several advantages over the conventional biochemical analyzers, e.g., reduced sample and reagent volumes, speeded up biochemical reactions, ultra-sensitive detection and higher system throughput, with several assays being integrated on the same chip. Hence, microfluidic biochips are replacing the conventional biochemical analyzers, and areable to integrate on-chip all the necessary functions for biochemical analysis. Microfluidic biochips have an immense potential in multiple application areas, such as clinical diagnostics, advanced sequencing, drug discovery, and environmental monitoring, to name a few. Consequently, over the last decade, biochips have received significant attention both in academia and industry. The International Technology Roadmap for Semiconductors 2011 has listed “Medical” as a “Market Driver” for the future, and many companies related to biochips have already emerged in recent years and have reported significant profits.
Original language | English |
---|---|
Title of host publication | 2012 NORCHIP |
Number of pages | 1 |
Publisher | IEEE |
Publication date | 2012 |
ISBN (Print) | 978-1-4673-2221-8 |
ISBN (Electronic) | 978-1-4673-2222-5 |
DOIs | |
Publication status | Published - 2012 |
Event | 2012 IEEE 30th NORCHIP Conference - Hotel Richmond, Copenhagen, Denmark Duration: 12 Nov 2012 → 13 Nov 2013 Conference number: 30 https://ieeexplore.ieee.org/xpl/conhome/6385345/proceeding |
Conference
Conference | 2012 IEEE 30th NORCHIP Conference |
---|---|
Number | 30 |
Location | Hotel Richmond |
Country/Territory | Denmark |
City | Copenhagen |
Period | 12/11/2012 → 13/11/2013 |
Internet address |