Biobased production of alkanes and alkenes through metabolic engineering of microorganisms - DTU Orbit (24/08/2019)

Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganisms can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as 'drop-in' biofuels. Some microorganisms have the ability to biosynthesize alkanes and alkenes naturally, but their production level is extremely low. Therefore, there have been various attempts to recruit other microbial cell factories for production of alkanes and alkenes by applying metabolic engineering strategies. Here we review different pathways and involved enzymes for alkane and alkene production and discuss bottlenecks and possible solutions to accomplish industrial level production of these chemicals by microbial fermentation.

General information
Publication status: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Yeast Cell Factories, Chalmers University of Technology
Contributors: Kang, M. K., Nielsen, J.
Pages: 613-622
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Industrial Microbiology and Biotechnology
Volume: 44
Issue number: 4
ISSN (Print): 1367-5435
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.24 SJR 1.107 SNIP 1.05
Web of Science (2017): Impact factor 3.103
Web of Science (2017): Indexed yes
Original language: English
Keywords: Alkanes/alkenes, Cell factories, Fatty acid biosynthesis, Metabolic engineering, TRY (titer, rate, and yield)
Electronic versions:
DOI: 10.1007/s10295-016-1814-y

Bibliographical note
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Source: FindIt
Source-ID: 2342289609
Research output: Contribution to journal › Review – Annual report year: 2016 › Research › peer-review