Binaural Scene Analysis: Localization, Detection and Recognition of Speakers in Complex Acoustic Scenes

Tobias May, S.L.J.D.E. Van de Par (Supervisor), A.G. Kohlrausch (Supervisor)

Research output: Book/ReportPh.D. thesisResearch

388 Downloads (Pure)

Abstract

The human auditory system has the striking ability to robustly localize and recognize a specific target source in complex acoustic environments while ignoring interfering sources. Surprisingly, this remarkable capability, which is referred to as auditory scene analysis, is achieved by only analyzing the waveforms reaching the two ears. Computers, however, are presently not able to compete with the performance achieved by the human auditory system, even in the restricted paradigm of confronting a computer algorithm based on binaural signals with a highly constrained version of auditory scene analysis, such as localizing a sound source in a reverberant environment or recognizing a speaker in the presence of interfering noise. In particular, the problem of focusing on an individual speech
source in the presence of competing speakers, termed the cocktail party problem, has been proven to be extremely challenging for computer algorithms. The primary objective of this thesis is the development of a binaural scene analyzer that is able to jointly localize, detect and recognize multiple speech sources in the presence of reverberation and interfering noise. The processing of the proposed system is divided into three main stages: localization stage, detection of speech sources, and recognition of speaker identities. The only information that is assumed to be known a priori is the
number of target speech sources that are present in the acoustic mixture. Furthermore, the aim of this work is to reduce the performance gap between humans and machines by improving the performance of the individual building blocks of the binaural scene analyzer. First, a binaural front-end inspired by auditory processing is designed to robustly determine the azimuth of multiple, simultaneously active sound sources in the presence of reverberation. The localization model builds on the supervised learning of azimuthdependent binaural cues, namely interaural time and level differences. Multi-conditional training is performed to incorporate the uncertainty of these binaural cues resulting from reverberation and the presence of competing sound sources. Second, a speech detection module that exploits the distinct spectral characteristics of speech and noise signals is developed to automatically select azimuthal positions that are likely to correspond to speech sources. Due to the established link between the localization stage and the recognition stage, which is realized by the speech detection module, the proposed binaural scene analyzer is able to selectively focus on a predefined number of speech sources that are positioned at unknown spatial locations, while ignoring interfering noise sources emerging from other spatial directions. Third, the speaker identities of all detected speech sources are recognized in the final stage of the model. To reduce the impact of environmental noise on the speaker recognition performance, a missing data classifier is combined with the adaptation of speaker models using a universal background model. This combination is particularly beneficial in nonstationary background noise.
Original languageEnglish
Number of pages195
ISBN (Print)978-90-386-3230-8
Publication statusPublished - 2012
Externally publishedYes

Bibliographical note

PhD thesis

Fingerprint

Dive into the research topics of 'Binaural Scene Analysis: Localization, Detection and Recognition of Speakers in Complex Acoustic Scenes'. Together they form a unique fingerprint.

Cite this