Binaural processing of modulated interaural level differences

Eric Robert Thompson, Torsten Dau

Research output: Contribution to journalJournal articleResearchpeer-review

415 Downloads (Pure)


Two experiments are presented that measure the acuity of binaural processing of modulated interaural level differences ILDs using psychoacoustic methods. In both experiments, dynamic ILDs were created by imposing an interaurally antiphasic sinusoidal amplitude modulation AM signal on high-frequency carriers, which were presented over headphones. In the first experiment, the sensitivity to dynamic ILDs was measured as a function of the modulation frequency using puretone, and interaurally correlated and uncorrelated narrow-band noise carriers. The intrinsic interaural level fluctuations of the uncorrelated noise carriers raised the ILD modulation detection thresholds with respect to the pure-tone carriers. The diotic fluctuations of the correlated noise carriers also caused a small increase in the thresholds over the pure-tone carriers, particularly with low ILD modulation frequencies. The second experiment investigated the modulation frequency selectivity in dynamic ILD processing by imposing an interaurally uncorrelated bandpass noise AM masker in series with the interaurally antiphasic AM signal on a pure-tone carrier. By varying the masker center frequencies relative to the signal modulation frequency, broadly tuned, bandpass-shaped patterns were obtained. Simulations with an existing binaural model show that a low-pass filter to limit the binaural temporal resolution is not sufficient to predict the results of the experiments.
Original languageEnglish
JournalJournal of the Acoustical Society of America
Issue number2
Pages (from-to)1017-1029
Publication statusPublished - 2008

Bibliographical note

Copyright (2008) Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America.


Dive into the research topics of 'Binaural processing of modulated interaural level differences'. Together they form a unique fingerprint.

Cite this