Benefiting from Spontaneously Generated 2D/3D Bulk-Heterojunctions in Ruddlesden−Popper Perovskite by Incorporation of S-Bearing Spacer Cation

Yajie Yan, Shuang Yu, Alireza Honarfar, Tõnu Pullerits, Kaibo Zheng*, Ziqi Liang

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

105 Downloads (Pure)

Abstract

2D Ruddlesden-Popper (RP) perovskite solar cells have manifested superior operation durability yet inferior charge transport compared to their 3D counterparts. Integrating 3D phases with 2D RP perovskites presents a compromise to maintain respective advantages of both components. Here, the spontaneous generation of 3D phases embedded in 2D perovskite matrix is demonstrated at room temperature via introducing S-bearing thiophene-2-ethylamine (TEA) as both spacer and stabilizer of inorganic lattices. The resulting 2D/3D bulk heterojunction structures are believed to arise from the compression-induced epitaxial growth of the 3D phase at the grain boundaries of the 2D phase through the Pb-S interaction. The as-prepared 2D TEA perovskites exhibit longer exciton diffusion length and extended charge carrier lifetime than the paradigm 2D phenylethylamine (PEA)-based analogues and hence demonstrate an outstanding power conversion efficiency of 7.20% with significantly increased photocurrent. Dual treatments by NH4Cl and dimethyl sulfoxide are further applied to ameliorate the crystallinity and crystal orientation of 2D perovskites. Consequently, TEA-based devices exhibit a stabilized efficiency over 11% with negligible hysteresis and display excellent ambient stability without encapsulation by preserving 80% efficiency after 270 h storage in air with 60 ± 5% relative humidity at 25 °C.
Original languageEnglish
Article number1900548
JournalAdvanced Science
Volume6
Issue number14
Number of pages9
ISSN2198-3844
DOIs
Publication statusPublished - 2019

Keywords

  • 2D Ruddlesdden–Popper perovskites
  • 3D phase
  • Air stability
  • Low-temperature fabrication
  • Planar solar cells

Fingerprint Dive into the research topics of 'Benefiting from Spontaneously Generated 2D/3D Bulk-Heterojunctions in Ruddlesden−Popper Perovskite by Incorporation of S-Bearing Spacer Cation'. Together they form a unique fingerprint.

Cite this