Abstract
In the present study an evaluation of the potential for bend-twist coupling effects in wind turbine blades is addressed. A method for evaluation of the coupling magnitude based on the results of finite element modeling and full-field displacement measurements obtained by experiments is developed and tested on small-scale coupled composite beams. In the proposed method the coupling coefficient for a generic beam is introduced based on the Euler-Bernoulli beam formulation. By applying the developed method for analysis of a commercial wind turbine blade structure it is demonstrated that a bend-twist coupling magnitude of up to 0.2 is feasible to achieve in the baseline blade structure made of glass-fiber reinforced plastics. Further, by substituting the glass-fibers with carbon-fibers the coupling effect can be increased to 0.4. Additionally, the effect of introduction of bend-twist coupling into a blade on such important blade structural properties as bending and torsional stiffness is demonstrated.
Original language | English |
---|---|
Article number | 012035 |
Book series | Journal of Physics: Conference Series (Online) |
Volume | 524 |
Issue number | 1 |
Number of pages | 10 |
ISSN | 1742-6596 |
DOIs | |
Publication status | Published - 2014 |
Event | 5th International Conference on The Science of Making Torque from Wind 2014 - Technical University of Denmark, Copenhagen, Denmark Duration: 10 Jun 2014 → 20 Jun 2014 Conference number: 5 http://indico.conferences.dtu.dk/conferenceDisplay.py?confId=138 |
Conference
Conference | 5th International Conference on The Science of Making Torque from Wind 2014 |
---|---|
Number | 5 |
Location | Technical University of Denmark |
Country/Territory | Denmark |
City | Copenhagen |
Period | 10/06/2014 → 20/06/2014 |
Internet address |