TY - JOUR
T1 - Behavior and chronic toxicity of two differently stabilized silver nanoparticles to Daphnia magna
AU - Sakka, Yvonne
AU - Skjolding, Lars Michael
AU - Mackevica, Aiga
AU - Filser, Juliane
AU - Baun, Anders
PY - 2016
Y1 - 2016
N2 - While differences in silver nanoparticle (AgNP) colloidal stability, surface potential, or acute aquatic toxicity for differently stabilized AgNP have often been reported, these have rarely been studied in long-term ecotoxicity tests. In the current study, we investigated the chronic toxicity of AgNP to Daphnia magna over a 21-day period with two different stabilizers (citrate and detergent), representative for charge and sterical stabilizers, respectively. This was coupled with a series of short-term experiments, such as mass balance and uptake/depuration testing, to investigate the behavior of both types of AgNP during a typical media exchange period in the D. magna test for chronic toxicity. As expected, the sterically stabilized AgNP were more stable in the test medium, also in the presence of food; however, a higher uptake of silver after 24 h exposure of the charge stabilized AgNP was found compared to the detergent-stabilized AgNP (0.046 ± 0.006 μg Ag μg DW−1 and 0.023 ± 0.005 μg Ag μg DW−1, respectively). In accordance with this, the higher reproductive effects and mortality were found for the charge-stabilized than for the sterically-stabilized silver nanoparticles in 21-d tests for chronic toxicity. LOEC was 19.2 μg Ag L−1 for both endpoints for citrate-coated AgNP and >27.5 μg Ag L−1 (highest tested concentration for detergent-stabilized AgNP). This indicates a link between uptake and toxicity. The inclusion of additional short-term experiments on uptake and depuration is recommended when longer-term chronic experiments with nanoparticles are conducted.
AB - While differences in silver nanoparticle (AgNP) colloidal stability, surface potential, or acute aquatic toxicity for differently stabilized AgNP have often been reported, these have rarely been studied in long-term ecotoxicity tests. In the current study, we investigated the chronic toxicity of AgNP to Daphnia magna over a 21-day period with two different stabilizers (citrate and detergent), representative for charge and sterical stabilizers, respectively. This was coupled with a series of short-term experiments, such as mass balance and uptake/depuration testing, to investigate the behavior of both types of AgNP during a typical media exchange period in the D. magna test for chronic toxicity. As expected, the sterically stabilized AgNP were more stable in the test medium, also in the presence of food; however, a higher uptake of silver after 24 h exposure of the charge stabilized AgNP was found compared to the detergent-stabilized AgNP (0.046 ± 0.006 μg Ag μg DW−1 and 0.023 ± 0.005 μg Ag μg DW−1, respectively). In accordance with this, the higher reproductive effects and mortality were found for the charge-stabilized than for the sterically-stabilized silver nanoparticles in 21-d tests for chronic toxicity. LOEC was 19.2 μg Ag L−1 for both endpoints for citrate-coated AgNP and >27.5 μg Ag L−1 (highest tested concentration for detergent-stabilized AgNP). This indicates a link between uptake and toxicity. The inclusion of additional short-term experiments on uptake and depuration is recommended when longer-term chronic experiments with nanoparticles are conducted.
KW - silver nanoparticle
KW - D. magna
KW - Chronic toxicity
KW - stabilizer effect
KW - uptake
U2 - 10.1016/j.aquatox.2016.06.025
DO - 10.1016/j.aquatox.2016.06.025
M3 - Journal article
C2 - 27449283
SN - 0166-445X
VL - 177
SP - 526
EP - 535
JO - Aquatic Toxicology
JF - Aquatic Toxicology
ER -