Bayesian probabilistic representation of complex systems: With application to wave load modeling

Sebastian T. Glavind, Henning Brüske, Erik D. Christensen, Michael H. Faber*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review


In this contribution, we develop and present a Bayesian probabilistic framework for the representation of complex systems and apply this to an industrial case of offshore environmental load modeling. Based on previous contributions on probabilistic modeling using Bayesian networks, we consider the case where both the model structure and its parameters are estimated from data. Gaussian process-based discrepancy modeling is introduced to represent uncertainties associated with data, when data are produced by models themselves. Two approaches are then introduced on how to deal with multiple model candidates, that is, Bayesian model averaging and decision context-specific model selection. The latter comprising the main novelty of this paper. Two examples are provided: (i) a principal example illustrating the simple but fundamental idea of context-specific model building and (ii) an industrial-scale example considering optimal ranking of evacuation options for platform personnel in the event of an emerging storm.
Original languageEnglish
JournalComputer-Aided Civil and Infrastructure Engineering
Publication statusAccepted/In press - 2021


Dive into the research topics of 'Bayesian probabilistic representation of complex systems: With application to wave load modeling'. Together they form a unique fingerprint.

Cite this