It is an established fact that coccolithophores are of little importance with respect to biomass and diversity in the Baltic proper. The likely biogeochemical and environmental reasons for this have recently been critically analyzed and reviewed. The main conclusion is that the calcium carbonate saturation of the Baltic Sea is the main controlling feature, and that in particular an undersaturation during wintertime remains the critical bottleneck for coccolithophores to prevail in the Baltic proper. While there is no reason to question these observations, it is still relevant to put on record the actual findings of coccolithophores from the Baltic proper. Examinations of Baltic Sea material from the Bothnian Sea, the Bothnian Bay and the Gulf of Finland prepared for transmission electron microscopy has thus revealed a consistent presence of a low diversity community of lightly calcified coccolithophores (i.e. Balaniger virgulosa HOL and HET, Papposphaera arctica HOL cfr. and Papposphaera iugifera). When including here also material examined from the Danish transitional waters connecting the North Sea and the Baltic proper, it is possible to generally support the presence in the western Baltic, the Sounds and the Kattegat of a contingent of coccolithophores that appear to be either persistently present within the area or episodically occurring as determined by larger scale hydrographical events within the North Sea/Baltic Sea confluence area.

General information
Publication status: Published
Organisations: National Institute of Aquatic Resources, Institute Management
Contributors: Thomsen, H. A.
Pages: 97-119
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Journal of Nannoplankton Research
Volume: 36
Issue number: 2
ISSN (Print): 1210-8049
Ratings:
Web of Science (2016): Indexed yes
Original language: English
Keywords: General biology - Taxonomy, nomenclature and terminology, Ecology: environmental biology - Plant, Ecology: environmental biology - Oceanography, Botany: general and systematic - Algae, Algae, Microorganisms, Nonvascular Plants, Plants, species taxonomy, Danish transitional water
Source: FindIt
Source-ID: 2349704403
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review