TY - JOUR
T1 - Automated on-chip analysis of tuberculosis drug-resistance mutation with integrated DNA ligation and amplification
AU - Minero, Gabriel Antonio S.
AU - Bagnasco, Martina
AU - Fock, Jeppe
AU - Tian, Bo
AU - Garbarino, Francesca
AU - Hansen, Mikkel Fougt
PY - 2020
Y1 - 2020
N2 - Detection of a single base mutation in Mycobacterium tuberculosis DNA can provide fast and highly specific diagnosis of antibiotic-resistant tuberculosis. Mutation-specific ligation of padlock probes (PLPs) on the target followed by rolling circle amplification (RCA) is highly specific, but challenging to integrate in a simple microfluidic device due to the low temperature stability of the phi29 polymerase and the interference of phi29 with the PLP annealing and ligation. Here, we utilized the higher operation temperature and temperature stability of Equiphi29 polymerase to simplify the integration of the PLP ligation and RCA steps of an RCA assay in two different strategies performed at uniform temperature. In strategy I, PLP annealing took place off-chip and the PLP ligation and RCA were performed in one pot and the two reactions were clocked by a change of the temperature. For a total assay time of about 1.5 h, we obtained a limit of detection of 2 pM. In strategy II, the DNA ligation mixture and the RCA mixture were separated into two chambers on a microfluidic disc. After on-disc PLP annealing and ligation, the disc was spun to mix reagents and initiate RCA. For a total assay time of about 2 h, we obtained a limit of detection of 5 pM. [Figure not available: see fulltext.].
AB - Detection of a single base mutation in Mycobacterium tuberculosis DNA can provide fast and highly specific diagnosis of antibiotic-resistant tuberculosis. Mutation-specific ligation of padlock probes (PLPs) on the target followed by rolling circle amplification (RCA) is highly specific, but challenging to integrate in a simple microfluidic device due to the low temperature stability of the phi29 polymerase and the interference of phi29 with the PLP annealing and ligation. Here, we utilized the higher operation temperature and temperature stability of Equiphi29 polymerase to simplify the integration of the PLP ligation and RCA steps of an RCA assay in two different strategies performed at uniform temperature. In strategy I, PLP annealing took place off-chip and the PLP ligation and RCA were performed in one pot and the two reactions were clocked by a change of the temperature. For a total assay time of about 1.5 h, we obtained a limit of detection of 2 pM. In strategy II, the DNA ligation mixture and the RCA mixture were separated into two chambers on a microfluidic disc. After on-disc PLP annealing and ligation, the disc was spun to mix reagents and initiate RCA. For a total assay time of about 2 h, we obtained a limit of detection of 5 pM. [Figure not available: see fulltext.].
KW - Rolling circle amplification
KW - Equiphi29
KW - Genotyping
KW - Magnetic nanoparticle readout
KW - Biodetection
U2 - 10.1007/s00216-020-02568-x
DO - 10.1007/s00216-020-02568-x
M3 - Journal article
C2 - 32157358
SN - 1618-2642
VL - 412
SP - 2705
EP - 2710
JO - Analytical and Bioanalytical Chemistry
JF - Analytical and Bioanalytical Chemistry
ER -