Abstract
A mutant Trypanosoma rangeli sialidase, Tr7, expressed in Pichia pastoris, exhibits significant trans-sialidase activity, and has been used for analytical-scale production of sialylated human milk oligosaccharides. Mass spectrometry-based site-specific N-glycoprofiling of Tr7 showed that heterogeneous high-mannose type N-glycans were present at all the five potential N-linked glycosites. N-linked glycans in Tr7 were predominantly neutral oligosaccharides with compositions Man8-16GlcNAc2, but also mono- and di-phosphorylated oligosaccharides in the forms of Man9-15P1GlcNAc2 and Man9-14P2GlcNAc2, respectively. Some phosphorylated N-linked glycans further contained an additional HexNAc, which has not previously been reported in P. pastoris-expressed proteins. We compiled a method pipeline that combined hydrophilic interaction liquid chromatography enrichment of glycopeptides, high accuracy mass spectrometry and automated interpretation of the mass spectra with in-house developed “MassAI” software, which proved efficient in glycan site microheterogeneity analysis. Functional analysis showed that the deglycosylated Tr7 retained more than 90% of both the sialidase and trans-sialidase activities relative to the glycosylated Tr7.
Original language | English |
---|---|
Journal | Glycobiology |
Volume | 25 |
Issue number | 12 |
Pages (from-to) | 1350-1361 |
ISSN | 0959-6658 |
DOIs | |
Publication status | Published - 2015 |
Keywords
- N-glycan
- P. pastoris
- T. rangeli sialidase mutant Tr7
- Mass spectrometry
- Trans-sialidase activity