Automated and temperature-controlled micro-PIV measurements enabling long-term-stable microchannel acoustophoresis characterization

Per Augustsson, Rune Barnkob, Steven T. Wereley, Henrik Bruus, Thomas Laurell

    Research output: Contribution to journalJournal articleResearchpeer-review

    Abstract

    We present a platform for micro particle image velocimetry (μPIV), capable of carrying out full-channel, temperature-controlled, long-term-stable, and automated μPIV-measurement of microchannel acoustophoresis with uncertainties below 5% and a spatial resolution in the order of 20 μm. A method to determine optimal μPIV-settings for obtaining high-quality results of the spatially inhomogeneous acoustophoretic velocity fields of large dynamical range is presented. In particular we study the dependence of the results on the μPIV interrogation window size and the number of repeated experiments. The μPIV-method was further verified by comparing it with our previously published particle tracking method. Using the μPIV platform we present a series of high-resolution measurements of the acoustophoretic velocity field as a function of the driving frequency, the driving voltage, and the resonator temperature. Finally, we establish a direct and consistent connection between the obtained acoustophoretic velocity fields, and continuous flow mode acoustophoresis, commonly used in applications.
    Original languageEnglish
    JournalLab on a Chip
    Volume11
    Issue number24
    Pages (from-to)4152-4164
    ISSN1473-0197
    DOIs
    Publication statusPublished - 2011

    Fingerprint

    Dive into the research topics of 'Automated and temperature-controlled micro-PIV measurements enabling long-term-stable microchannel acoustophoresis characterization'. Together they form a unique fingerprint.

    Cite this