Attack or attacked: The sensory and fluid mechanical constraints of copepods’ predator–prey interactions

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Many animals are predator and prey at the same time. This dual position represents a fundamental dilemma because gathering food often leads to increased exposure to predators. The optimization of the tradeoff between eating and not being eaten depends strongly on the sensing, feeding, and mechanisms for mobility of the parties involved. Here, I describe the mechanisms of sensing, escaping predators, and capturing prey in marine pelagic copepods. I demonstrate that feeding tradeoffs vary with feeding mode, and I describe simple fluid mechanical models that are used to quantify these tradeoffs and review observations and experiments that support the assumptions and test the predictions. I conclude by presenting a mechanistically underpinned model that predicts optimal foraging behaviors and the resulting size-scaling and magnitude of copepods’ clearance rates
Original languageEnglish
JournalIntegrative and Comparative Biology
Volume53
Issue number5
Pages (from-to)821-831
ISSN1540-7063
DOIs
Publication statusPublished - 2013

Fingerprint

Dive into the research topics of 'Attack or attacked: The sensory and fluid mechanical constraints of copepods’ predator–prey interactions'. Together they form a unique fingerprint.

Cite this