Abstract
Nanofluidics has become interesting as the basis for further device miniaturization. Different from macro and microfluidics, nanoconfined flows are significantly influenced by fluid-wall interaction. In this context, recent studies have reported the potential exploitation of imposed thermal gradients as mechanism to transport water in nanoconduits. Moreover, graphene-based materials have attracted increasing attention in nanofluidic applications due to their unique thermal, structural and hydrodynamic properties. Here, we conduct atomistic simulations to investigate water transport in graphene nanoslit channels driven by thermal gradients. The study is focused in understanding therelation between phonon currents induced in the walls by imposed thermal gradients and the corresponding measured flow rates. Furthermore, a comprehensive analysis of the influence of wettability, multi-layer graphene in the walls and geometrical asymmetries is performed. Our results provide valuable information for the design of thermal graphene-based nanopumps and contribute to the understanding of suitable driving mechanisms for liquids in nanoconduits.
Original language | English |
---|---|
Publication date | 2018 |
Number of pages | 1 |
Publication status | Published - 2018 |
Event | 71st Annual Meeting of the APS Division of Fluid Dynamics - Georgia World Congress Center , Atlanta, United States Duration: 18 Nov 2018 → 20 Nov 2018 |
Conference
Conference | 71st Annual Meeting of the APS Division of Fluid Dynamics |
---|---|
Location | Georgia World Congress Center |
Country/Territory | United States |
City | Atlanta |
Period | 18/11/2018 → 20/11/2018 |