Asymmetric supercapacitor based on carbon nanofibers as the anode and two-dimensional copper cobalt oxide nanosheets as the cathode - DTU Orbit (17/10/2019)

Asymmetric supercapacitor based on carbon nanofibers as the anode and two-dimensional copper cobalt oxide nanosheets as the cathode

This paper reports the fabrication of an ultra-high energy and power density asymmetric supercapacitor (ASC) containing a novel porous carbon nanofiber derived from hypercross-linked polymers (HCP-CNF) and two-dimensional copper cobalt oxide nanosheets (CCO-NS) as the negative and positive electrodes, respectively. The micropore-enriched HCP-CNF is obtained from a facile Friedel-Crafts reaction with naphthalene and α, α’-dichloro-p-xylene as the starting material. The CCO-NS have been prepared by a simple and inexpensive hydrothermal synthesis using polyvinylpyrrolidone (PVP) as a shape controlling agent. The fabricated CCO-NS//HCP-CNF ASC device exhibit a high specific capacitance, 244Fg−1 at a current density of 1Ag−1, owing to the unique porous architecture of CCO-NS and the interconnected microporous carbon skeleton with a high surface area of HCP-CNF. Furthermore, the assembled ASC device show an ultra-high energy density of 25.1Whkg−1 at a power density of 400Wkg−1 with maximum operating voltage of 1.60V. The electrode shows good capacitance retention (91.1%) after 5000 cycles in a 3M aqueous KOH solution. In addition, two ASC devices are connected in series powered a 5mm diameter LED indicator for approximately 30min, highlighting its efficient power supply.

General information
Publication status: Published
Organisations: Imaging and Structural Analysis, Department of Energy Conversion and Storage, Centro Federal De Educacao Tecnologica Celso Suckow Da Fonseca, Pusan National University
Corresponding author: Kim, H.
Contributors: Suresh Babu, R., Vinodh, R., de Barros, A., Samyn, L. M., Prasanna, K., Maier, M., Alves, C., Kim, H.
Pages: 390-403
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Chemical Engineering Journal
Volume: 366
ISSN (Print): 1369-703X
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
Original language: English
Keywords: CuCo2O4, Energy storage, Porous carbon, Asymmetric supercapacitors, Charge-discharge
DOIs: 10.1016/j.cej.2019.02.108
Source: FindIt
Source ID: 2444018764
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review