Assessment of Urban Pluvial Flood Risk and Efficiency of Adaptation Options Through Simulations – A New Generation of Urban Planning Tools

We present a new framework for flexible testing of flood risk adaptation strategies in a variety of urban development and climate scenarios. This framework couples the 1D-2D hydrodynamic simulation package MIKE FLOOD with the agent-based urban development model DAnCE4Water and provides the possibility to systematically test various flood risk adaptation measures ranging from large infrastructure changes over decentralised water management to urban planning policies. We have tested the framework in a case study in Melbourne, Australia considering 9 scenarios for urban development and climate and 32 potential combinations of flood adaptation measures. We found that the performance of adaptation measures strongly depended on the considered climate and urban development scenario and the other implementation measures implemented, suggesting that adaptive strategies are preferable over one-off investments. Urban planning policies proved to be an efficient means for the reduction of flood risk, while implementing property buyback and pipe increases in a guideline-oriented manner was too costly. Random variations in location and time point of urban development could have significant impact on flood risk and would in some cases outweigh the benefits of less efficient adaptation strategies. The results of our setup can serve as an input for robust decision making frameworks and thus support the identification of flood risk adaptation measures that are economically efficient and robust to variations of climate and urban layout.

General information
Publication status: Published
Organisations: Department of Environmental Engineering, Urban Water Systems, Monash University, DHI Water - Environment - Health
Contributors: Löwe, R., Urich, C., Sto. Domingo, N. D. F., Mark, O., Deletic, A., Arnbjerg-Nielsen, K.
Pages: 355–367
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Hydrology
Volume: 550
ISSN (Print): 0022-1694
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.06 SJR 1.832 SNIP 1.725
Web of Science (2017): Impact factor 3.727
Web of Science (2017): Indexed yes
Original language: English
Keywords: Flood risk, Urban developmen, Climate change, Agent-based modelling, Hydrodynamic modelling, Robust decision making
Electronic versions:
20161225_Coupling_Urban_Flood_WithSupMat.pdf. Embargo ended: 09/05/2019
DOIs:
10.1016/j.jhydrol.2017.05.009
Source: FindIt
Source ID: 2358526659
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review