Assessment of MODIS sun-sensor geometry variations effect on observed NDVI using MSG SEVIRI geostationary data

Rasmus Fensholt, Inge Sandholt, Simon Richard Proud

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

The quality of Earth observation (EO) based vegetation monitoring has improved during recent years, which can be attributed to the enhanced sensor design of new satellites such as MODIS (Moderate Resolution Imaging Spectroradiometer) on Terra and Aqua. It is however expected that sun-sensor geometry variations will have a more visible impact on the Normalized Difference Vegetation Index (NDVI) from MODIS compared to earlier data sources, since noise related to atmosphere and sensor calibration is substantially reduced in the MODIS data stream. For this reason, the effect of varying MODIS viewing geometry on red, near-infrared (NIR) and NDVI needs to be quantified. Data from the geostationary MSG (Meteosat Second Generation) SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensor is well suited for this purpose due to the fixed position of the sensor, the spectral resolution, including a red and NIR band, and the high temporal resolution (15 min) of data, enabling MSG data to be used as a reference for estimating MODIS surface reflectance and NDVI variations caused by varying sun-sensor geometry. The study was performed on data covering West Africa for periods of lowest possible cloud cover for three consecutive years (2004-2006). An analysis covering the entire range of NDVI revealed day-to-day variations in observed MODIS NDVI of 50-60% for medium dense vegetation (NDVI approximate to 0.5) caused by variations in MODIS view zenith angles (VZAs) between nadir and the high forward-scatter view direction. Statistical analysis on red, NIR and NDVI from MODIS and MSG SEVIRI for three transects (characterized by different vegetation densities) showed that both MODIS red and NIR reflectances are highly dependant on MODIS VZA and relative azimuth angle (RAA), due to the anisotropic behaviour of red and NIR reflectances. The anisotropic reflectance in the red and NIR band was to some degree minimized by the ratioing properties of NDVI. The minimization by the NDVI normalization is very dependent on the vegetation density however, since the degree of anisotropy in red and NIR reflectances depends on the amount of vegetation present. MODIS VZA and RAA effects on NDVI were highest for medium dense vegetation (NDVI approximate to 0.5-0.6). The VZA and RAA effects were less for sparsely vegetated areas (NDVI approximate to 0.3-0.35) and the smallest effect on NDVI was found for dense vegetation (NDVI approximate to 0.7). These results have implications for the end users' interpretation of NDVI, and challenge the expediency of the MODIS NDVI compositing technique, which should be refined to distinguish between forward- and backward-scatter viewing direction by taking RAA into account.
Original languageEnglish
JournalInternational Journal of Remote Sensing
Volume31
Issue number23
Pages (from-to)6163-6187
ISSN0143-1161
DOIs
Publication statusPublished - 2010
Externally publishedYes

Fingerprint

Dive into the research topics of 'Assessment of MODIS sun-sensor geometry variations effect on observed NDVI using MSG SEVIRI geostationary data'. Together they form a unique fingerprint.

Cite this