Abstract
The expansion of e-commerce and the sharing economy has paved the way for crowdshipping as an innovative approach to addressing last-mile delivery challenges. Previous studies and implementations have predominantly concentrated on private vehicle-based crowdshipping, which may lead to increased traffic congestion and emissions due to additional trips made specifically for deliveries. To circumvent these possible adverse effects, this paper explores a public transport (PT)-based crowdshipping concept as a complementary solution to the traditional parcel delivery systems. In this model, PT users leverage their routine journeys to perform delivery tasks. We propose a methodology that includes a parcel locker location model and a vehicle routing model to analyze the effect of PT-based crowdshipping. Notably, the parcel locker location model aids in planning a PT-based crowdshipping network and identifying obstacles to its development. A case study conducted in the central district of Copenhagen utilizing real-world data assesses the effects of PT-based crowdshipping. The findings suggest that PT-based crowdshipping can decrease the total kilometers traveled by vehicles, the overall working hours of drivers, and the number of vans required for last-mile deliveries, thereby alleviating urban traffic congestion and environmental pollution. Nevertheless, the growth of PT-based crowdshipping may be limited by the availability of crowdshippers, indicating that initiatives to increase the number of crowdshippers are essential.
Original language | English |
---|---|
Journal | Frontiers of Engineering Management |
Volume | 11 |
Pages (from-to) | 697–709 |
ISSN | 2095-7513 |
DOIs | |
Publication status | Published - 2024 |
Keywords
- Crowdshipping
- Impact assessment
- Integrated passenger and freight transportation
- Last-mile delivery
- Public transport-based crowdshipping