Assessing the demographic connectivity of common cockles in a shallow estuary as a basis for fisheries management and stock protection efforts

Flemming Thorbjørn Hansen*, Anders Chr. Erichsen, Camille Saurel, Pedro Seabra Freitas

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Common cockle Cerastoderma edule populations in the Danish Limfjorden constitute an important ecosystem component and a valuable resource for fishermen and industries, providing a large proportion of cockle landings in both Denmark and the European Union. However, processes driving cockle recruitment and mortality are not well understood, and prevent sustainable fisheries management and species protection efforts. We report a thorough study of processes that are the main drivers of population recruitment, namely larval dispersal and settlement. Outputs from biophysical modelling of cockle larval dispersal, connectivity analysis and derived graph theory metrics were used to analyse potential demographic connectivity or isolation between known cockle populations and other parts of Limfjorden. The results show that the most productive and commercially important cockle beds are almost exclusively dependent on larval imports from unexploited spawning biomass elsewhere rather than on self-recruitment, allowing for exploitation levels that would be unsustainable otherwise. Other parts of Limfjorden are relatively isolated, relying mostly on self-recruitment. The results also show that in some areas where predicted larval settlement potentials are highest, the absence of a cockle population indicates that other factors, likely environmental, are more important. This study provides an example of contrasting population dynamics and connectivity, suggesting that the vulnerability of cockle populations to exploitation or natural mortality may be highly variable and interlinked. Ignoring processes affecting larval dispersal may jeopardise cockle populations and fisheries in Limfjorden. This study highlights the importance of understanding processes of marine connectivity for the protection of bivalve populations and sustainable fisheries management.
Original languageEnglish
Article numberMFCav8
JournalMarine Ecology - Progress Series
ISSN0171-8630
DOIs
Publication statusAccepted/In press - 2024

Keywords

  • Larval disposal
  • Connectivity
  • Agent-based modelling
  • Cockles
  • Cerastoderma edule
  • Limfjorden

Fingerprint

Dive into the research topics of 'Assessing the demographic connectivity of common cockles in a shallow estuary as a basis for fisheries management and stock protection efforts'. Together they form a unique fingerprint.

Cite this