TY - GEN
T1 - Assessing risks for the use of drones for wind turbine inspections
AU - Kolios, Athanasios
PY - 2024
Y1 - 2024
N2 - This paper presents a comprehensive risk assessment framework for integrating drones into wind turbine inspections, addressing technical, operational, human factors, environmental, and regulatory risks. Utilizing a multidimensional approach based on Failure Modes Effects and Criticality Analysis (FMECA), the study evaluates potential risks in drone-assisted wind turbine inspections, considering various factors like communication reliability, sensor functionality, battery performance, and environmental impacts. The research emphasizes the importance of systematic risk identification, evaluation, and prioritization in enhancing the safety and reliability of drone operations in the renewable energy sector. The framework’s practical application is demonstrated through a case study involving real-world offshore wind farms, engaging industry experts and employing structured data collection methods. The study identifies, assesses, and offers mitigation strategies for critical risks, underlining the significant potential of drones in optimizing maintenance processes and advancing sustainable energy production. Future research directions include refining risk assessment methodologies, advancing drone technology, and fostering international collaboration for broader adoption of drone-based inspections in renewable energy.
AB - This paper presents a comprehensive risk assessment framework for integrating drones into wind turbine inspections, addressing technical, operational, human factors, environmental, and regulatory risks. Utilizing a multidimensional approach based on Failure Modes Effects and Criticality Analysis (FMECA), the study evaluates potential risks in drone-assisted wind turbine inspections, considering various factors like communication reliability, sensor functionality, battery performance, and environmental impacts. The research emphasizes the importance of systematic risk identification, evaluation, and prioritization in enhancing the safety and reliability of drone operations in the renewable energy sector. The framework’s practical application is demonstrated through a case study involving real-world offshore wind farms, engaging industry experts and employing structured data collection methods. The study identifies, assesses, and offers mitigation strategies for critical risks, underlining the significant potential of drones in optimizing maintenance processes and advancing sustainable energy production. Future research directions include refining risk assessment methodologies, advancing drone technology, and fostering international collaboration for broader adoption of drone-based inspections in renewable energy.
U2 - 10.1088/1742-6596/2767/3/032030
DO - 10.1088/1742-6596/2767/3/032030
M3 - Article in proceedings
T3 - Journal of Physics: Conference Series
BT - The Science of Making Torque from Wind (TORQUE 2024): Dynamics, control, and monitoring
PB - IOP Publishing
T2 - The Science of Making Torque from Wind (TORQUE 2024)
Y2 - 29 May 2024 through 31 May 2024
ER -