Assessing PCB pollution in the Baltic Sea - An equilibrium partitioning based study

Assessing PCB pollution in the Baltic Sea - An equilibrium partitioning based study

Sediment cores and bottom water samples from across the Baltic Sea region were analyzed for freely dissolved concentrations (C\text{free}), total sediment concentrations (C\text{T}), and the dissolved aqueous fraction in water of seven indicator PCBs. Ex-situ equilibrium sampling of sediment samples was conducted with polydimethylsiloxane (PDMS) coated glass fibers that were analyzed by automated thermal desorption GC-MS, which yielded PCB concentrations in the fiber coating (C\text{PDMS}). Measurements of C\text{PDMS} and C\text{T} were then applied to determine (i) spatially resolved freely dissolved PCB concentrations; (ii) baseline toxicity potential based on chemical activities (a); (iii) site specific mixture compositions; (iv) diffusion gradients at the sediment water interface and within the sediment cores; and (vi) site specific distribution ratios (K\text{D}). The contamination levels were low in the Gulf of Finland and moderate to elevated in the Baltic Proper, with the highest levels observed in the western Baltic Sea. The SPME method has been demonstrated to be an appropriate and sensitive tool for area surveys presenting new opportunities to study the in-situ distribution and thermodynamics of hydrophobic organic chemicals at trace levels in marine environments.

General information

Publication status: Published
Organisations: Department of Environmental Engineering, Environmental Fate & Effect of Chemicals, Hamburg University of Applied Sciences, University of the West of Scotland, Helmholtz-Zentrum Geesthacht - Centre for Materials and Coastal Research, Leibniz Institute for Baltic Sea Research
Contributors: Lang, S., Mayer, P., Hursthouse, A., Kötke, D., Hand, I., Schulz-Bull, D., Witt, G.
Pages: 886-894
Publication date: 2018
Peer-reviewed: Yes

Publication information

Journal: Chemosphere
Volume: 191
ISSN (Print): 0045-6535
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 5.34 SJR 1.448 SNIP 1.54
Web of Science (2018): Impact factor 5.108
Web of Science (2018): Indexed yes
Original language: English
Keywords: Passive sampling, Bioavailability, Sediments, PCBs, Chemical activity, Baseline toxicity
DOIs:
10.1016/j.chemosphere.2017.10.073
Source: FindIt
Source-ID: 2391915369
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review