Assessing glycolytic flux alterations resulting from genetic perturbations in E. coli using a biosensor

We describe the development of an optimized glycolytic flux biosensor and its application in detecting altered flux in a production strain and in a mutant library. The glycolytic flux biosensor is based on the Cra-regulated ppsA promoter of E. coli controlling fluorescent protein synthesis. We validated the glycolytic flux dependency of the biosensor in a range of different carbon sources in six different E. coli strains and during mevalonate production. Furthermore, we studied the flux-altering effects of genome-wide single gene knock-outs in E. coli in a multiplex FlowSeq experiment. From a library consisting of 2126 knock-out mutants, we identified 3 mutants with high-flux and 95 mutants with low-flux phenotypes that did not have severe growth defects. This approach can improve our understanding of glycolytic flux regulation improving metabolic models and engineering efforts.

General information
Publication status: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Bacterial Synthetic Biology, Research Groups
Contributors: Lehning, C. E., Siedler, S., Ellabaan, M. M. H., Sommer, M. O. A.
Pages: 194-202
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Metabolic Engineering
Volume: 42
ISSN (Print): 1096-7176
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 7.95 SJR 3.337 SNIP 1.806
Web of Science (2017): Impact factor 7.674
Web of Science (2017): Indexed yes
Original language: English
Electronic versions:
1_s2.0_S1096717617300733_main.pdf
DOIs:

Bibliographical note
Open Access funded by European Research Council
Under a Creative Commons license
Source: PublicationPreSubmission
Source ID: 133915452
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review