Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon–chlorine isotope analysis and quantitative PCR

D. Hunkeler, Y. Abe, Mette Martina Broholm, S. Jeannottat, C. Westergaard, C.S. Jacobsen, R. Aravena, Poul Løgstrup Bjerg

    Research output: Contribution to journalJournal articleResearchpeer-review

    1 Downloads (Orbit)

    Abstract

    The fate of chlorinated ethenes in a large contaminant plume originating from a tetrachloroethene (PCE) source in a sandy aquifer in Denmark was investigated using novel methods including compound-specific carbon and chlorine isotope analysis and quantitative real-time polymerase chain reaction (qPCR) methods targeting Dehaloccocoides sp. and vcrA genes. Redox conditions were characterized as well based on concentrations of dissolved redox sensitive compounds and sulfur isotopes in SO4 2−. In the first 400 m downgradient of the source, the plume was confined to the upper 20m of the aquifer. Further downgradient itwidened in vertical direction due to diverging groundwater flow reaching a depth of up to 50 m. As the plume dipped downward andmoved away fromthe source, O2 and NO3 − decreased to below detection levels, while dissolved Fe2+ and SO4 2− increased above detectable concentrations, likely due to pyrite oxidation as confirmed by the depleted sulfur isotope signature of SO4 2−. In the same zone, PCE and trichloroethene (TCE) disappeared and cis- 1,2-dichloroethene (cDCE) became the dominant chlorinated ethene. PCE and TCE were likely transformed by reductive dechlorination rather than abiotic reduction by pyrite as indicated by the formation of cDCE and stable carbon isotope data. TCE and cDCE showed carbon isotope trends typical for reductive dechlorination with an initial depletion of 13C in the daughter products followed by an enrichment of 13C as degradation proceeded. At 1000 m downgradient of the source, cDCE was the dominant chlorinated ethene and had reached the source δ13C value confirming that cDCE was not affected by abiotic or biotic degradation. Further downgradient (up to 1900 m), cDCE became enriched in 13C by up to 8‰demonstrating its further transformation while vinylchloride (VC) concentrations remained low (b1 μg/L) and ethene was not observed. The correlated shift of carbon and chlorine isotope ratios of cDCE by 8 and 3.9‰, respectively, the detection of Dehaloccocides sp genes, and strongly reducing conditions in this zone provide strong evidence for reductive dechlorination of cDCE. The significant enrichment of 13C in VC indicates that VC was transformed further, although the mechanismcould not be determined. The transformation of cDCEwas the rate limiting step as no accumulation of VC occurred. In summary, the study demonstrates that carbon–chlorine isotope analysis and qPCR combinedwith traditional approaches can be used to gain detailed insight into the processes that control the fate of chlorinated ethenes in large scale plumes.
    Original languageEnglish
    JournalJournal of Contaminant Hydrology
    Volume119
    Pages (from-to)69-79
    ISSN0169-7722
    DOIs
    Publication statusPublished - 2011

    Fingerprint

    Dive into the research topics of 'Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon–chlorine isotope analysis and quantitative PCR'. Together they form a unique fingerprint.

    Cite this