Projects per year
Abstract
This thesis studies various aspects of the Tutte polynomial, especially focusing on the Merino-Welsh conjecture.
We write T(G;x,y) for the Tutte polynomial of a graph G with variables x and y. In 1999, Merino and Welsh conjectured that if G is a loopless 2-connected graph, then
T(G;1,1) ≤ max{T(G;2,0), T(G;0,2)}.
The three numbers, T(G;1,1), T(G;2,0) and T(G;0,2) are respectively the numbers of spanning trees, acyclic orientations and totally cyclic orientations of G.
First, I extend Negami's splitting formula to the multivariate Tutte polynomial. Using the splitting formula, Thomassen and I found a lower bound for the number of spanning trees in a k-edge-connected graph. Our bound is tight for k even, but for k odd we give a slightly better lower bound which we believe is not tight. We prove that the minimum number of spanning trees in a 3-edge-connected graph with n vertices is, not surprisingly, significantly smaller than the minimum number of spanning trees in a 4-edge-connected graph. However, we conjecture that the minimum number of spanning trees of a 5-edge-connected graph is actually obtained by a 6-edge-connected graph asymptotically.
Thomassen proved the following partial result for the Merino-Welsh conjecture. Assume the graph G is loopless, bridgeless and has n vertices and m edges.
If m ≤ 1.066 n then T(G;1,1) ≤ T(G;2,0).
If m ≥ 4(n-1) then T(G;1,1) ≤ T(G;0,2).
I improve in this thesis Thomassen's result as follows:
If m ≤ 1.29(n-1) then T(G;1,1) ≤ T(G;2,0).
If m ≥ 3.58(n-1) and G is 3-edge-connected then T(G;1,1) ≤ T(G;0,2).
Strengthening Thomassen's idea that acyclic orientations dominate spanning trees in sparse graphs, I conjecture that the ratio T(G;2,0)/T(G;1,1) increases as G gets sparser. To support this conjecture, I prove a variant of the conjecture for series-parallel graphs.
The Merino-Welsh conjecture has a stronger version claiming that the Tutte polynomial is convex on the line segment between (2,0) and (0,2) for loopless 2-connected graphs. Chavez-Lomeli et al. proved that this holds for coloopless paving matroids, and I provide a shorter proof of their theorem. I also prove it for minimally 2-edge-connected graphs. As a general statement for the convexity of the Tutte polynomials, I show that the Tutte polynomial of a sparse paving matroid is almost surely convex in the first quadrant. In contrast, I conjecture that the Tutte polynomial of a sparse paving matroid with fixed rank is almost never convex in the first quadrant.
The following multiplicative version of the Merino-Welsh conjecture was considered by Noble and Royle:
T(G;1,1)2 ≤ T(G;2,0) T(G;0,2).
Noble and Royle proved that this multiplicative version holds for series-parallel graphs, using a computer algorithm that they designed. Using a property of the splitting formula which I found, I improve their algorithm so that it is applicable to the class of graphs with bounded treewidth (or pathwidth). As an application, I verify that the multiplicative version holds for graphs with pathwidth at most 3.
We write T(G;x,y) for the Tutte polynomial of a graph G with variables x and y. In 1999, Merino and Welsh conjectured that if G is a loopless 2-connected graph, then
T(G;1,1) ≤ max{T(G;2,0), T(G;0,2)}.
The three numbers, T(G;1,1), T(G;2,0) and T(G;0,2) are respectively the numbers of spanning trees, acyclic orientations and totally cyclic orientations of G.
First, I extend Negami's splitting formula to the multivariate Tutte polynomial. Using the splitting formula, Thomassen and I found a lower bound for the number of spanning trees in a k-edge-connected graph. Our bound is tight for k even, but for k odd we give a slightly better lower bound which we believe is not tight. We prove that the minimum number of spanning trees in a 3-edge-connected graph with n vertices is, not surprisingly, significantly smaller than the minimum number of spanning trees in a 4-edge-connected graph. However, we conjecture that the minimum number of spanning trees of a 5-edge-connected graph is actually obtained by a 6-edge-connected graph asymptotically.
Thomassen proved the following partial result for the Merino-Welsh conjecture. Assume the graph G is loopless, bridgeless and has n vertices and m edges.
If m ≤ 1.066 n then T(G;1,1) ≤ T(G;2,0).
If m ≥ 4(n-1) then T(G;1,1) ≤ T(G;0,2).
I improve in this thesis Thomassen's result as follows:
If m ≤ 1.29(n-1) then T(G;1,1) ≤ T(G;2,0).
If m ≥ 3.58(n-1) and G is 3-edge-connected then T(G;1,1) ≤ T(G;0,2).
Strengthening Thomassen's idea that acyclic orientations dominate spanning trees in sparse graphs, I conjecture that the ratio T(G;2,0)/T(G;1,1) increases as G gets sparser. To support this conjecture, I prove a variant of the conjecture for series-parallel graphs.
The Merino-Welsh conjecture has a stronger version claiming that the Tutte polynomial is convex on the line segment between (2,0) and (0,2) for loopless 2-connected graphs. Chavez-Lomeli et al. proved that this holds for coloopless paving matroids, and I provide a shorter proof of their theorem. I also prove it for minimally 2-edge-connected graphs. As a general statement for the convexity of the Tutte polynomials, I show that the Tutte polynomial of a sparse paving matroid is almost surely convex in the first quadrant. In contrast, I conjecture that the Tutte polynomial of a sparse paving matroid with fixed rank is almost never convex in the first quadrant.
The following multiplicative version of the Merino-Welsh conjecture was considered by Noble and Royle:
T(G;1,1)2 ≤ T(G;2,0) T(G;0,2).
Noble and Royle proved that this multiplicative version holds for series-parallel graphs, using a computer algorithm that they designed. Using a property of the splitting formula which I found, I improve their algorithm so that it is applicable to the class of graphs with bounded treewidth (or pathwidth). As an application, I verify that the multiplicative version holds for graphs with pathwidth at most 3.
Original language | English |
---|
Place of Publication | Kgs. Lyngby |
---|---|
Publisher | Technical University of Denmark |
Number of pages | 110 |
Publication status | Published - 2016 |
Series | DTU Compute PHD-2015 |
---|---|
Number | 384 |
ISSN | 0909-3192 |
Fingerprint
Dive into the research topics of 'Aspects of the Tutte polynomial'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Aspects of the Tutte Polynomial of a Graph
Ok, S. (PhD Student), Thomassen, C. (Main Supervisor), Fischer, P. (Examiner), Jackson, W. B. (Examiner) & Bang-Jensen, J. (Examiner)
Technical University of Denmark
01/10/2012 → 30/09/2015
Project: PhD