Abstract
Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hanging pipe position will lose stability if the mean flow speed exceeds a certain critical value. Adding a pulsating component to the fluid flow is shown to stabilize the hanging position for high values of the ratio between fluid and pipe-mass, and to marginally destabilize this position for low ratios. An approximate nonlinear solution for small-amplitude flutter oscillations is obtained using a fifth-order multiple scales perturbation method, and large-amplitude oscillations are examined by numerical integration of the autonomous model equations, using a path-following algorithm. The pulsating fluid component is shown to affect the nonlinear behavior of the system, e.g. bifurcation types can change from supercritical to subcritical, creating several coexisting stable solutions and also anti-symmetrical flutter may appear.
Original language | English |
---|---|
Journal | Nonlinear Dynamics |
Volume | 19 |
Issue number | 2 |
Pages (from-to) | 171-191 |
ISSN | 0924-090X |
Publication status | Published - 1999 |