Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs), block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes.

General information
Publication status: Published
Organisations: Department of Environmental Engineering, Urban Water Engineering, Department of Micro- and Nanotechnology, Amphiphilic Polymers in Biological Sensing, University of Copenhagen, Aquaporin A/S
Number of pages: 45
Pages: 307-351
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Membranes
Volume: 5
Issue number: 3
ISSN (Print): 2077-0375
Ratings:
Scopus rating (2015): CiteScore 2.95 SJR 0.75 SNIP 1.262
Web of Science (2015): Indexed yes
Original language: English
Keywords: aquaporins, biomimetic membranes, block copolymers, membrane proteins, microfluidics, polyamide layer, polyhedral oligomeric silsesquioxanes, protein-polymer-interactions, proteopolymersomes
Electronic versions:
membranes_05_00307_v2.pdf
DOIs:
10.3390/membranes5030307
Source: FindIt
Source ID: 2280062074
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review