Approximate L0 constrained Non-negative Matrix and Tensor Factorization

    Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

    1056 Downloads (Pure)


    Non-negative matrix factorization (NMF), i.e. V = WH where both V, W and H are non-negative has become a widely used blind source separation technique due to its part based representation. The NMF decomposition is not in general unique and a part based representation not guaranteed. However, imposing sparseness both improves the uniqueness of the decomposition and favors part based representation. Sparseness in the form of attaining as many zero elements in the solution as possible is appealing from a conceptional point of view and corresponds to minimizing reconstruction error with an L0 norm constraint. In general, solving for a given L0 norm is an NP hard problem thus convex relaxatin to regularization by the L1 norm is often considered, i.e., minimizing ( 1/2 ||V-WHk||^2+lambda|H|_1). An open problem is to control the degree of sparsity imposed. We here demonstrate that a full regularization path for the L1 norm regularized least squares NMF for fixed W can be calculated at the cost of an ordinary least squares solution based on a modification of the Least Angle Regression and Selection (LARS) algorithm forming a non-negativity constrained LARS (NLARS). With the full regularization path, the L1 regularization strength lambda that best approximates a given L0 can be directly accessed and in effect used to control the sparsity of H. The MATLAB code for the NLARS algorithm is available for download.
    Original languageEnglish
    Title of host publication2008 IEEE International Symposium on Circuits and Systems : ISCAS 2008 (Special Session on Non-negative matix and Tensor Factorization)
    Publication date2008
    ISBN (Print)978-1-4244-1683-7
    Publication statusPublished - 2008
    Event2008 IEEE International Symposium on Circuits and Systems - Seattle, WA, United States
    Duration: 18 May 200821 May 2008


    Conference2008 IEEE International Symposium on Circuits and Systems
    CountryUnited States
    CitySeattle, WA
    Internet address

    Bibliographical note

    Copyright: 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE

    Fingerprint Dive into the research topics of 'Approximate L0 constrained Non-negative Matrix and Tensor Factorization'. Together they form a unique fingerprint.

    Cite this