TY - JOUR
T1 - Application of the cubic-plus-association (CPA) equation of state to complex mixtures with aromatic hydrocarbons
AU - Folas, Georgios
AU - Kontogeorgis, Georgios
AU - Michelsen, Michael Locht
AU - Stenby, Erling Halfdan
PY - 2006
Y1 - 2006
N2 - The cubic-plus-association (CPA) equation of state is applied to phase equilibria of mixtures containing alcohols, glycols, water, and aromatic or olefinic hydrocarbons. Previously, CPA has been successfully used for mixtures containing various associating compounds (alcohols, glycols, amines, organic acids, and water) and aliphatic hydrocarbons. We show in this work that the model can be satisfactorily extended to complex vapor-liquid-liquid equilibria with aromatic or olefinic hydrocarbons. The solvation between aromatics/olefinics and polar compounds is accounted for. This is particularly important for mixtures containing water and glycols, but less so for mixtures with alcohols. For water/hydrocarbons, a single binary interaction parameter which accounts for the solvation is fitted to the experimental liquid-liquid equilibria (LLE) data. The interaction parameter of the physical term of the model (the Soave-Redlich-Kwong (SRK) equation of state) can be obtained from mixtures with aliphatic hydrocarbons. For mixtures of glycols with aromatic hydrocarbons, two parameters have been fitted to experimental data, one in the physical (SRK) part and one in the association part of the model. Satisfactory liquid-liquid equilibrium predictions are obtained for multicomponent water-alcohol/glycol-aromatic hydrocarbons using solely parameters obtained from binary data.
AB - The cubic-plus-association (CPA) equation of state is applied to phase equilibria of mixtures containing alcohols, glycols, water, and aromatic or olefinic hydrocarbons. Previously, CPA has been successfully used for mixtures containing various associating compounds (alcohols, glycols, amines, organic acids, and water) and aliphatic hydrocarbons. We show in this work that the model can be satisfactorily extended to complex vapor-liquid-liquid equilibria with aromatic or olefinic hydrocarbons. The solvation between aromatics/olefinics and polar compounds is accounted for. This is particularly important for mixtures containing water and glycols, but less so for mixtures with alcohols. For water/hydrocarbons, a single binary interaction parameter which accounts for the solvation is fitted to the experimental liquid-liquid equilibria (LLE) data. The interaction parameter of the physical term of the model (the Soave-Redlich-Kwong (SRK) equation of state) can be obtained from mixtures with aliphatic hydrocarbons. For mixtures of glycols with aromatic hydrocarbons, two parameters have been fitted to experimental data, one in the physical (SRK) part and one in the association part of the model. Satisfactory liquid-liquid equilibrium predictions are obtained for multicomponent water-alcohol/glycol-aromatic hydrocarbons using solely parameters obtained from binary data.
U2 - 10.1021/ie050976q
DO - 10.1021/ie050976q
M3 - Journal article
SN - 0888-5885
VL - 45
SP - 1527
EP - 1538
JO - Industrial & Engineering Chemistry Research
JF - Industrial & Engineering Chemistry Research
IS - 4
ER -