Antiparasitic activity of chicory (Cichorium intybus) and its natural bioactive compounds in livestock: a review

Increasing drug resistance in gastrointestinal (GI) parasites of livestock and concerns about chemical residues in animal products and the environment are driving the development of alternative control strategies that are less reliant on the use of synthetic drugs. An increasingly investigated approach is the use of bioactive forages with antiparasitic properties as part of the animal's diet (nutraceuticals) or as potential sources of novel, natural parasiticides. Chicory (Cichorium intybus) is a multi-purpose crop and one of the most promising bioactive forages in temperate regions, and numerous in vivo trials have explored its potential against parasitic nematodes in livestock. However, it is unclear whether chicory can induce a direct and broad activity against various GI parasites in different livestock species, and the levels of chicory in the diet that are required to exert an efficient antiparasitic effect. Moreover, the mechanisms leading to the reported parasiticidal activity of chicory are still largely unknown, and its bioactive phytochemicals have only recently been investigated. In this review, we summarise the progress in the study of the antiparasitic activity of chicory and its natural bioactive compounds against GI parasites in livestock, through examination of the published literature. The available evidence indicates that feeding chicory can reduce faecal egg counts and/or worm burdens of abomasal nematodes, but not infections with intestinal worms, in ruminants. Highly chicory-rich diets (>= 70% of chicory dry matter in the diet) may be necessary to directly affect abomasal parasitism. Chicory is known to synthesise several bioactive compounds with potential antiparasitic activity, but most research has been devoted to the role of sesquiterpene lactones (SL). Recent in vitro studies have confirmed direct and potent activity of SL-rich extracts from chicory against different GI helminths of livestock. Chicory SL have also been reported to exhibit antimalarial properties and its potential antiprotozoal activity in livestock remains to be evaluated. Furthermore, the detailed identification of the main antiparasitic metabolites of chicory and their pharmacokinetics need further confirmation. Research gaps and perspectives on the potential use of chicory as a nutraceutical forage and a source of bioactive compounds for parasite control in livestock are discussed.

General information
Publication status: Published
Organisations: Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Photosynthetic Cell Factories, National Veterinary Institute, Innate Immunology, Universidad Austral de Chile, University of Copenhagen, Norwegian Veterinary Institute
Number of pages: 14
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Parasites & Vectors
Volume: 11
Article number: 475
ISSN (Print): 1756-3305
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 3.22 SJR 1.565 SNIP 1.27
Web of Science (2018): Impact factor 3.031
Web of Science (2018): Indexed yes
Original language: English
Keywords: Chicory, Antiparasitic, Helminths, Protozoa, Livestock, Bioactive compounds, Sesquiterpene lactones, Nutraceutical
Electronic versions:
s13071_018_3012_4.pdf
DOIs:
10.1186/s13071-018-3012-4

Bibliographical note
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Source: FindIt
Source-ID: 2438583335
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review