Antibiotic resistance genes in municipal wastewater treatment systems and receiving waters in Arctic Canada

Antibiotic resistance genes in municipal wastewater treatment systems and receiving waters in Arctic Canada

Domestic wastewater discharges may adversely impact arctic ecosystems and local indigenous people, who rely on being able to hunt and harvest food from their local environment. Therefore, there is a need to develop efficient wastewater treatment plants (WWTPs), which can be operated in remote communities under extreme climatic conditions. WWTPs have been identified as reservoirs of antibiotic resistance genes (ARGs). The objective of this work was to quantify the presence of nine different ARG markers (int1, sul1, sul2, tet(O), erm(B), mecA, blaCTX-M, blaTEM, and qnr(S)) in two passive systems (waste stabilization ponds [WSPs]) and one mechanical filtration plant operating in two smaller and one large community, respectively, in Nunavut, Canada. Measurement of water quality parameters (carbonaceous oxygen demand, ammonia, total suspended solids, Escherichia coli and total coliforms) showed that the WWTPs provided only primary treatment. Low levels of the ARGs (2 log copies/mL) were observed in the effluent, demonstrating that bacteria residing in three northern WWTPs harbour ARGs conferring resistance to multiple clinically-relevant classes of antibiotics. Our results indicate that long-term storage in WSPs benefitted removal of organic material and some ARGs. However, one WSP system showed evidence of the enrichment of sul1, sul2, mecA, tet(O) and qnr(S). Further research is needed to fully understand if these ARG releases pose a risk to human health, especially in the context of traditional hunting and fishing activities.

General information

Publication status: Published
Organisations: National Food Institute, Research Group for Analytical and Predictive Microbiology, Dalhousie University, University of Regina
Contributors: Neudorf, K. D., Huang, Y. N., Ragush, C. M., Yost, C. K., Jamieson, R. C., Hansen, L. T.
Pages: 1085-1094
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Science of the Total Environment
Volume: 598
ISSN (Print): 0048-9697
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.98 SJR 1.546 SNIP 1.674
Web of Science (2017): Impact factor 4.61
Web of Science (2017): Indexed yes
Original language: English
Keywords: ARG enrichment, Antibiotic resistant bacteria, Arctic communities, Mechanical filtration, Quantitative PCR, Waste stabilization ponds, Reservoirs, Water Analysis, Waterworks, Sewage and Industrial Wastes Treatment, Bioengineering, Biochemistry, Antibiotics, Bacteria, Effluents, Escherichia coli, Genes, Health risks, Lakes, Polymerase chain reaction, Reservoirs (water), Stabilization, Stabilization ponds, Water quality, Antibiotic resistance genes, Antibiotic-resistant bacteria, Municipal wastewater treatment, Total suspended solids, Wastewater treatment plants, Water quality parameters, Wastewater treatment

Electronic versions:
Post_print_Neudorf_et_al_2017_Arg_in_Nunavut_WW.pdf. Embargo ended: 02/05/2019
DOIs:
10.1016/j.scitotenv.2017.04.151
Source: FindIt
Source ID: 2358229314
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review