TY - JOUR
T1 - Angle resolved characterization of nanostructured and conventionally textured silicon solar cells
AU - Davidsen, Rasmus Schmidt
AU - Ormstrup, Jeppe
AU - Ommen, Martin Lind
AU - Larsen, Peter Emil
AU - Schmidt, Michael Stenbæk
AU - Boisen, Anja
AU - Nordseth, Ørnulf
AU - Hansen, Ole
PY - 2015
Y1 - 2015
N2 - We report angle resolved characterization of nanostructured and conventionally textured silicon solar cells. The nanostructured solar cells are realized through a single step, mask-less, scalable reactive ion etching (RIE) texturing of the surface. Photovoltaic properties including short circuit current, open circuit voltage, fill factor (FF) and power conversion efficiency are each measured as function of the relative incident angle between the solar cell and the light source. The relative incident angle is varied from 0° to 90° in steps of 10° in orthogonal axes, such that each solar cell is characterized at 100 different angle combinations. The angle resolved photovoltaic properties are summarized in terms of the average, angle-dependent electrical power output normalized to the power output at normal incidence and differently textured cells on different silicon substrates are compared in terms of angle resolved performance. The results show a 3% point improvement in average electrical power output normalized with respect to normal incidence power output of RIE textured, multicrystalline Si cells compared to conventional multicrystalline Si cells and above 1% point improvement of RIE textured monocrystalline Si cells compared to conventional monocrystalline Si cells.
AB - We report angle resolved characterization of nanostructured and conventionally textured silicon solar cells. The nanostructured solar cells are realized through a single step, mask-less, scalable reactive ion etching (RIE) texturing of the surface. Photovoltaic properties including short circuit current, open circuit voltage, fill factor (FF) and power conversion efficiency are each measured as function of the relative incident angle between the solar cell and the light source. The relative incident angle is varied from 0° to 90° in steps of 10° in orthogonal axes, such that each solar cell is characterized at 100 different angle combinations. The angle resolved photovoltaic properties are summarized in terms of the average, angle-dependent electrical power output normalized to the power output at normal incidence and differently textured cells on different silicon substrates are compared in terms of angle resolved performance. The results show a 3% point improvement in average electrical power output normalized with respect to normal incidence power output of RIE textured, multicrystalline Si cells compared to conventional multicrystalline Si cells and above 1% point improvement of RIE textured monocrystalline Si cells compared to conventional monocrystalline Si cells.
KW - Black silicon
KW - Reactive ion etching
KW - Incident angle
KW - Reflectance
KW - Angle-resolved characterization
U2 - 10.1016/j.solmat.2015.04.001
DO - 10.1016/j.solmat.2015.04.001
M3 - Journal article
SN - 0927-0248
VL - 140
SP - 134
EP - 140
JO - Solar Energy Materials & Solar Cells
JF - Solar Energy Materials & Solar Cells
ER -