Analytical solution of phosphate kinetics for hemodialysis

M. Andersen*, K. O. Bangsgaard, J. G. Heaf, J. T. Ottesen

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

19 Downloads (Pure)


Chronic kidney diseases imply an ongoing need to remove toxins, with hemodialysis as the preferred treatment modality. We derive analytical expressions for phosphate clearance during dialysis, the single pass (SP) model corresponding to a standard clinical hemodialysis and the multi pass (MP) model, where dialysate is recycled and therefore makes a smaller clinical setting possible such as a transportable dialysis suitcase. For both cases we show that the convective contribution to the dialysate is negligible for the phosphate kinetics and derive simpler expressions. The SP and MP models are calibrated to clinical data of ten patients showing consistency between the models and provide estimates of the kinetic parameters. Immediately after dialysis a rebound effect is observed. We derive a simple formula describing this effect which is valid both posterior to SP or MP dialysis. The analytical formulas provide explanations to observations of previous clinical studies.

Original languageEnglish
Article number11
JournalJournal of Mathematical Biology
Number of pages22
Publication statusPublished - 2023


Dive into the research topics of 'Analytical solution of phosphate kinetics for hemodialysis'. Together they form a unique fingerprint.

Cite this