Analytical Comparison of Dual-Input Isolated dc-dc Converter with an ac or dc Inductor for Renewable Energy Systems - DTU Orbit (09/08/2019)

Analytical Comparison of Dual-Input Isolated dc-dc Converter with an ac or dc Inductor for Renewable Energy Systems

This paper presents two configurations of dual-input (DI) or three-port (TPC) isolated dc-dc converters for hybrid renewable energy systems such as photovoltaics and batteries. These two converters are derived by integrating an interleaved boost converter and a single-active bridge converter with an ac inductor as a power interfacing element or phase-shift softswitching converter with an output dc inductor. Both converters are controlled by a pulse-width modulation and phase-shift hybrid modulation scheme. The two converter topologies are, even though quite similar from the topological and control perspective, distinct in operation principles, voltage/power transfer functions, loss distributions, soft-switching constraints, and power efficiency under the same operating conditions. Moreover, the inductor design differs greatly between these two cases. In this paper, a comprehensive comparison is given for the first time and thereby the corresponding design tradeoffs are discussed. Finally, a laboratory 1 kW prototype is constructed and tested to verify the theoretical analysis.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Electronics
Contributors: Zhang, Z., Mira Albert, M. D. C., Andersen, M. A. E.
Pages: 659-664
Publication date: 2017

Host publication information
Title of host publication: IEEE International Future Energy Electronics Conference 2017
Publisher: IEEE
ISBN (Print): 9781509051571
Keywords: Converter, dc-dc, Multiple inputs, Renewable Energies, Soft switching
Electronic versions:
PID4700879.pdf
DOIs:
10.1109/IFEEC.2017.7992117
Source: PublicationPreSubmission
Source-ID: 132851082
Research output: Chapter in Book/Report/Conference proceeding Article in proceedings – Annual report year: 2017 Research peer-review