Analysis of the equivalent indenter concept used to extract Young’s modulus from a nano-indentation test: some new insights into the Oliver–Pharr method

In this paper a thorough analysis of the equivalent indenter concept applied to nano-indentation is carried out, motivated by the fact that previous works in the field have not considered the requirement of a consistent relation between contact depth and projected contact area. Dimensional analysis is initially used to prove that the shape of the axisymmetric equivalent indenter can be regarded as a material property, provided that size-effects are negligible. Subsequently, it is shown that such shape can effectively be employed to describe the nano-indentation unloading stage by means of Sneddon's elastic solution which is formally valid only for indentation into a flat surface. This allows for formulating the problem of extracting Young's modulus from the unloading curve as an optimization problem. However, it is proved that the latter does not have a unique solution, due to the particular mathematical structure of the underlying equations; hence, additional constraints are needed to set restrictions on the admissible equivalent indenter shapes. An example of such constraint is hidden in some apparent inconsistencies of the well-known Oliver–Pharr method, which is demonstrated to be based on an equivalent conical indenter whose semi-apical angle depends on the ratio between residual and total penetration. Specifically, this angle tends to 90° when the material exhibits extensive inelastic deformation, whereas it reduces to the one characteristic of the real indenter for a perfectly elastic material. This provides a new physical explanation for the relatively good accuracy of the method even in presence of a non-negligible residual contact impression on the sample.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Manufacturing Engineering
Contributors: Andriollo, T., Thorborg, J., Hattel, J. H.
Number of pages: 22
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Modelling and Simulation in Materials Science and Engineering
Volume: 25
Issue number: 4
Article number: 045004
ISSN (Print): 0965-0393
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.8 SJR 0.821 SNIP 0.977
Web of Science (2017): Impact factor 1.793
Web of Science (2017): Indexed yes
Original language: English
Keywords: Indentation, Analytical solutions, Young’s modulus, Elastic modulus, Oliver–Pharr, Equivalent indenter,
Effective indenter
Electronic versions:
Postprint_Andriollo_et_al_2017_Analysis_of_the_equivalent_indenter_concept_used_to_extract_Youngs_modulus_Some_new_insights_into_the_Oliver_Pharr_method.pdf. Embargo ended: 13/04/2018
DOIs:
10.1088/1361-651X/aa6831
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review