TY - JOUR
T1 - Analysis of parameters influencing pathogen concentration in a room with displacement ventilation using computational fluid dynamics and Taguchi methods
AU - Yuce, Bahadir Erman
AU - Aganovic, Amar
AU - Nielsen, Peter Vilhelm
AU - Wargocki, Pawel
PY - 2023
Y1 - 2023
N2 - Analyzing multiple physical factors simultaneously to determine optimal ventilation solutions can be challenging. Furthermore, this type of analysis needs a large case number to be investigated, making the problem's solution unfeasible. This study tackled these challenges by integrating Computational Fluid Dynamics (CFD) with the Taguchi method to overcome these issues. Our previous research extensively examined the application of the Taguchi method in ventilation studies. Now, we analyzed the influence of different factors on pathogen concentration in a room equipped with displacement ventilation. Initially, the study examined the effects of room dimensions and the location, position, velocity, and temperature of the inlet and outlet of the ventilation system. The Taguchi method was employed to manage the complexity of the analysis, resulting in a reduced set of 27 cases from a total of 19683 possible combinations. The findings revealed that the inlet velocity was the most influential parameter in minimizing pathogen concentration; however, room volume has a limited effect. Subsequently, the optimal solution obtained through the Taguchi method was modeled using CFD and validated. Then, these results were compared against the results of the Wells-Riley model, which utilized room volume and inlet velocity as input variables. In the second step, additional parameters were investigated while keeping the room volume constant. This analysis reaffirmed the significant impact of inlet velocity on pathogen concentration, as observed in the initial study. Additionally, it was found that inlet temperature had a greater influence on pathogen concentration in rooms with smaller dimensions.
AB - Analyzing multiple physical factors simultaneously to determine optimal ventilation solutions can be challenging. Furthermore, this type of analysis needs a large case number to be investigated, making the problem's solution unfeasible. This study tackled these challenges by integrating Computational Fluid Dynamics (CFD) with the Taguchi method to overcome these issues. Our previous research extensively examined the application of the Taguchi method in ventilation studies. Now, we analyzed the influence of different factors on pathogen concentration in a room equipped with displacement ventilation. Initially, the study examined the effects of room dimensions and the location, position, velocity, and temperature of the inlet and outlet of the ventilation system. The Taguchi method was employed to manage the complexity of the analysis, resulting in a reduced set of 27 cases from a total of 19683 possible combinations. The findings revealed that the inlet velocity was the most influential parameter in minimizing pathogen concentration; however, room volume has a limited effect. Subsequently, the optimal solution obtained through the Taguchi method was modeled using CFD and validated. Then, these results were compared against the results of the Wells-Riley model, which utilized room volume and inlet velocity as input variables. In the second step, additional parameters were investigated while keeping the room volume constant. This analysis reaffirmed the significant impact of inlet velocity on pathogen concentration, as observed in the initial study. Additionally, it was found that inlet temperature had a greater influence on pathogen concentration in rooms with smaller dimensions.
KW - Computational fluid dynamics
KW - Taguchi
KW - Ventilation
KW - Covid-19
KW - Optimization
KW - Wells-Riley
U2 - 10.1016/j.jobe.2023.108002
DO - 10.1016/j.jobe.2023.108002
M3 - Journal article
SN - 2352-7102
VL - 80
JO - Journal of Building Engineering
JF - Journal of Building Engineering
M1 - 108002
ER -