Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett

Fen Yang, J.D. Jensen, Birte Svensson, H.J.L. Jørgensen, D.B. Collinge, Christine Finnie

    Research output: Contribution to journalJournal articleResearchpeer-review

    Abstract

    A proteomic analysis was conducted to map the events during the initial stages of the interaction between the fungal pathogen Fusarium graminearum and the susceptible barley cultivar Scarlett. Quantification of fungal DNA demonstrated a sharp increase in fungal biomass in barley spikelets at 3 days after inoculation. This coincided with the appearance of discrete F. graminearum-induced proteolytic fragments of beta-amylase. Based on these results, analysis of grain proteome changes prior to extensive proteolysis enabled identification of barley proteins responding early to infection by the fungus. In total, the intensity of 51 protein spots was significantly changed in F. graminearum-infected spikelets and all but one were identified. These included pathogenesis-related proteins, proteins involved in energy metabolism, secondary metabolism and protein synthesis. A single fungal protein of unknown function was identified. Quantitative real-time RT-PCR analysis of selected genes showed a correlation between high gene expression and detection of the corresponding proteins. Fungal genes encoding alkaline protease and endothiapepsin were expressed during 1-3 days after inoculation, making them candidates for generation of the observed beta-amylase fragments. These fragments have potential to be developed as proteome-level markers for fungal infection that are also informative about grain protein quality.
    Original languageEnglish
    JournalProteomics
    Volume10
    Pages (from-to)3748-3755
    ISSN1615-9853
    DOIs
    Publication statusPublished - 2010

    Fingerprint Dive into the research topics of 'Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett'. Together they form a unique fingerprint.

    Cite this