Analysis and optimization of coupled windings in magnetic resonant wireless power transfer systems with orthogonal experiment method

The coupled magnetic resonant unit (CMRU) has great effect on the transmitting power capability and efficiency of magnetic resonant wireless power transfer system. The key objective i.e. the efficiency coefficient k_Q is introduced in the design of CMRU or the coupled windings based on the mutual inductance model. Then the design method with orthogonal experiments and finite element method simulation is proposed to maximize the k_Q due to low precise analytical model of AC resistance and inductance for PCB windings at high-frequency. The method can reduce the design iterations and thereby can get more optimal design results. The experiments verified the design objective of k_Q as well as the design method effectively. In the optimal PCB windings prototype at operating frequency of 4 MHz, the k_Q and the maximum efficiency are increased by about 12% and 4% respectively.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Electronics, Gutian River Hydropower Plant, Fuzhou University
Corresponding author: Mao, L.
Contributors: Yudi, X., Xingkui, M., Mao, L., Zhang, Z., Andersen, M. A. E.
Number of pages: 6
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Elektronika ir Elektrotechnika
Volume: 23
Issue number: 6
ISSN (Print): 1392-1215
Ratings:
Scopus rating (2017): CiteScore 1.03 SJR 0.258 SNIP 0.624
Web of Science (2017): Impact factor 1.088
Web of Science (2017): Indexed yes
Original language: English
Keywords: Wireless power transfer, Magnetic resonant, Orthogonal experiments, Magnetic coupling structure optimization
Electronic versions:
3_Analysis_and_Optimization_with_Orthogonal_Experiments_Method_Final.pdf
DOIs:
10.5755/j01.eie.23.6.19692
Source: PublicationPreSubmission
Source ID: 133321466
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review