Analysis and Characterization of Machined Surfaces with Aesthetic Functionality

The generation of fine machined surfaces with high gloss is an important topic in mould manufacturing. The surface gloss can be characterized by means of scattered light sensors and a representative parameter such as A_q. In this paper, in-line measurements of scattered light distribution are compared with roughness parameters calculated using a confocal microscope, in order to assess surface aesthetic quality. Several surfaces have been machined by means of high precision milling, producing different surface topographies. Surface characterization has been performed on a machine using a scattered light sensor, and using a confocal microscope in laboratory conditions. The calculated A_q parameter is compared with the amplitude roughness parameters S_a and S_q, and with hybrid parameters S_dq and R_dq representing the average slope of the surface features. Scanning electron microscope (SEM) images are used as visual benchmarks to identify the parameters’ correlation with the visual appearance. A different linear trend of the relationship between A_q, R_dq, and S_dq is observed. The description of the surface quality through S_a or S_q instead is found to be insufficient. This is explained by means of SEM pictures showing a dramatic influence of the smeared material over the machined surface.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Manufacturing Engineering
Corresponding author: Biondani, F. G.
Contributors: Biondani, F. G., Bissacco, G., Pilný, L., Hansen, H. N.
Pages: 261-269
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: International Journal of Automation Technology
Volume: 13
Issue number: 2
ISSN (Print): 1881-7629
Original language: English
Keywords: Scattered light sensor, Surface appearance, Machining
Source: RIS
Source-ID: urn:33DE9C238317F339A80FC8363FA60A3B
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review