Analysing wind farm efficiency on complex terrains

Francesco Castellani, Davide Astolfi, Ludovico Terzi, Kurt Schaldemose Hansen, Javier Sanz Rodrigo

    Research output: Contribution to journalConference articleResearchpeer-review

    457 Downloads (Pure)

    Abstract

    The stratification of the atmospheric boundary layer (ABL) is classified in terms of the M-O length and subsequently used to determine the relationship between ABL stability and the fatigue loads of a wind turbine located inside an offshore wind farm. Recorded equivalent fatigue loads, representing blade-bending and tower bottom bending, are combined with the operational statistics from the instrumented wind turbine as well as with meteorological statistics defining the inflow conditions. Only a part of all possible inflow conditions are covered through the approximately 8200 hours of combined measurements. The fatigue polar has been determined for an (almost) complete 360° inflow sector for both load sensors, representing mean wind speeds below and above rated wind speed, respectively, with the inflow conditions classified into three different stratification regimes: unstable, neutral and stable conditions. In general, impact of ABL stratification is clearly seen on wake affected inflow cases for both blade and tower fatigue loads. However, the character of this dependence varies significantly with the type of inflow conditions – e.g. single wake inflow or multiple wake inflow.
    Original languageEnglish
    Article number012142
    Book seriesJournal of Physics: Conference Series (Online)
    Volume524
    Issue number1
    Number of pages10
    ISSN1742-6596
    DOIs
    Publication statusPublished - 2014
    Event5th International Conference on The Science of Making Torque from Wind 2014 - Technical University of Denmark, Copenhagen, Denmark
    Duration: 10 Jun 201420 Jun 2014
    Conference number: 5
    http://indico.conferences.dtu.dk/conferenceDisplay.py?confId=138

    Conference

    Conference5th International Conference on The Science of Making Torque from Wind 2014
    Number5
    LocationTechnical University of Denmark
    Country/TerritoryDenmark
    CityCopenhagen
    Period10/06/201420/06/2014
    Internet address

    Bibliographical note

    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

    Fingerprint

    Dive into the research topics of 'Analysing wind farm efficiency on complex terrains'. Together they form a unique fingerprint.

    Cite this