An SDRAM controller for real-time systems

For real-time systems we need to statically determine worst-case execution times (WCET) of tasks to proof the schedulability of the system. To enable static WCET analysis, the platform needs to be time-predictable. The platform includes the processor, the caches, the memory system, the operating system, and the application software itself. All those components need to be timing analyzable. Current computers use DRAM as a cost effective main memory. However, these DRAM chips have timing requirements that depend on former accesses and also need to be refreshed to retain their content. Standard memory controllers for DRAM memories are optimized to provide maximum bandwidth or throughput at the cost of variable latency for individual memory accesses. In this paper we present an SDRAM controller for real-time systems. The controller is optimized for the worst case and constant latency to provide a base of the memory hierarchy for time-predictable systems.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Embedded Systems Engineering, Technical University of Denmark
Contributors: Lakis, E., Schoeberl, M.
Number of pages: 8
Publication date: 2013

Host publication information
Title of host publication: 2013 IEEE 16th International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC)
Publisher: IEEE
Electronic versions:
06913224.pdf
DOIs:
10.1109/ISORC.2013.6913224

Bibliographical note
2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Source: FindIt
Source-ID: 272043108
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2014 › Research › peer-review