Phosphorus (P) is present in large amounts in agricultural residues and organic wastes from human consumption, from which it can be recovered as fertiliser, reducing dependence on primary P. Crucial for a secondary resource is its ability to fulfil the functions of the resource intended to be substituted. This quality of secondary resources is not captured well by material flow analysis (MFA). A static MFA of the Danish anthropogenic P cycle was adapted for optimization via linear programming to minimize primary P imports. The MFA system was adapted to reflect typical nutrient availability from various secondary-P fertilisers, to allow for exchange of secondary-P fertilisers between regions (sewage sludge incineration ash and composted organic household waste), and to reflect the system's development over 3 annual time steps. Since P accumulating in agricultural soil gradually becomes available for plants over time, the outcome showed both a gradual decline of mineral P fertiliser inputs and net additions to soil P stocks stabilising at distinctly lower levels than evident from the static MFA. The optimization model's outcome, accounting for the dynamic aspects of transport and P availability to crops over time, suggests a substitution potential of over 80% (9.8 Gg primary P) by P recovered from sewage sludge and household biowaste, compared to 35% in the static MFA.