An isotopic analysis of ionising radiation as a source of sulphuric acid

Martin Andreas Bødker Enghoff, Nicolai Christian Bork, S. Hattori, C. Meusinger, M. Nakagawa, Jens Olaf Pepke Pedersen, S. Danielache, Y. Ueno, M. S. Johnson, N. Yoshida, Henrik Svensmark

    Research output: Contribution to journalJournal articleResearchpeer-review

    455 Downloads (Pure)

    Abstract

    Sulphuric acid is an important factor in aerosol nucleation and growth. It has been shown that ions enhance the formation of sulphuric acid aerosols, but the exact mechanism has remained undetermined. Furthermore some studies have found a deficiency in the sulphuric acid budget, suggesting a missing source. In this study the production of sulphuric acid from SO2 through a number of different pathways is investigated. The production methods are standard gas phase oxidation by OH radicals produced by ozone photolysis with UV light, liquid phase oxidation by ozone, and gas phase oxidation initiated by gamma rays. The distributions of stable sulphur isotopes in the products and substrate were measured using isotope ratio mass spectrometry. All methods produced sulphate enriched in S-34 and we find an enrichment factor (delta S-34) of 8.7 +/- 0.4 parts per thousand (1 standard deviation) for the UV-initiated OH reaction. Only UV light (Hg emission at 253.65 nm) produced a clear non-mass-dependent excess of S-33. The pattern of isotopic enrichment produced by gamma rays is similar, but not equal, to that produced by aqueous oxidation of SO2 by ozone. This, combined with the relative yields of the experiments, suggests a mechanism in which ionising radiation may lead to hydrated ion clusters that serve as nanoreactors for S(IV) to S(VI) conversion.
    Original languageEnglish
    JournalAtmospheric Chemistry and Physics
    Volume12
    Issue number12
    Pages (from-to)5319-5327
    ISSN1680-7316
    DOIs
    Publication statusPublished - 2012

    Fingerprint

    Dive into the research topics of 'An isotopic analysis of ionising radiation as a source of sulphuric acid'. Together they form a unique fingerprint.

    Cite this