TY - JOUR
T1 - An isotopic analysis of ionising radiation as a source of sulphuric acid
AU - Enghoff, Martin Andreas Bødker
AU - Bork, Nicolai Christian
AU - Hattori, S.
AU - Meusinger, C.
AU - Nakagawa, M.
AU - Pedersen, Jens Olaf Pepke
AU - Danielache, S.
AU - Ueno, Y.
AU - Johnson, M. S.
AU - Yoshida, N.
AU - Svensmark, Henrik
PY - 2012
Y1 - 2012
N2 - Sulphuric acid is an important factor in aerosol nucleation and growth. It has been shown that ions enhance the formation of sulphuric acid aerosols, but the exact mechanism has remained undetermined. Furthermore some studies have found a deficiency in the sulphuric acid budget, suggesting a missing source. In this study the production of sulphuric acid from SO2 through a number of different pathways is investigated. The production methods are standard gas phase oxidation by OH radicals produced by ozone photolysis with UV light, liquid phase oxidation by ozone, and gas phase oxidation initiated by gamma rays. The distributions of stable sulphur isotopes in the products and substrate were measured using isotope ratio mass spectrometry. All methods produced sulphate enriched in S-34 and we find an enrichment factor (delta S-34) of 8.7 +/- 0.4 parts per thousand (1 standard deviation) for the UV-initiated OH reaction. Only UV light (Hg emission at 253.65 nm) produced a clear non-mass-dependent excess of S-33. The pattern of isotopic enrichment produced by gamma rays is similar, but not equal, to that produced by aqueous oxidation of SO2 by ozone. This, combined with the relative yields of the experiments, suggests a mechanism in which ionising radiation may lead to hydrated ion clusters that serve as nanoreactors for S(IV) to S(VI) conversion.
AB - Sulphuric acid is an important factor in aerosol nucleation and growth. It has been shown that ions enhance the formation of sulphuric acid aerosols, but the exact mechanism has remained undetermined. Furthermore some studies have found a deficiency in the sulphuric acid budget, suggesting a missing source. In this study the production of sulphuric acid from SO2 through a number of different pathways is investigated. The production methods are standard gas phase oxidation by OH radicals produced by ozone photolysis with UV light, liquid phase oxidation by ozone, and gas phase oxidation initiated by gamma rays. The distributions of stable sulphur isotopes in the products and substrate were measured using isotope ratio mass spectrometry. All methods produced sulphate enriched in S-34 and we find an enrichment factor (delta S-34) of 8.7 +/- 0.4 parts per thousand (1 standard deviation) for the UV-initiated OH reaction. Only UV light (Hg emission at 253.65 nm) produced a clear non-mass-dependent excess of S-33. The pattern of isotopic enrichment produced by gamma rays is similar, but not equal, to that produced by aqueous oxidation of SO2 by ozone. This, combined with the relative yields of the experiments, suggests a mechanism in which ionising radiation may lead to hydrated ion clusters that serve as nanoreactors for S(IV) to S(VI) conversion.
U2 - 10.5194/acp-12-5319-2012
DO - 10.5194/acp-12-5319-2012
M3 - Journal article
VL - 12
SP - 5319
EP - 5327
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
SN - 1680-7316
IS - 12
ER -