An interdisciplinary and catchment approach to enhancing urban flood resilience: a Melbourne case

B. C. Rogers*, N. Bertram, B. Gersonius, A. Gunn, Roland Löwe, C Murphy, R Pasman, M Radhakrishnan, C Urich, T H F Wong, Karsten Arnbjerg-Nielsen

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

60 Downloads (Pure)

Abstract

This paper presents a novel interdisciplinary and catchment-based approach for exploring urban flood resilience. Our research identified and developed a diverse set of adaptation measures for Elwood, a suburb in Melbourne, Australia, that is vulnerable to pluvial and coastal flooding. We drew on methods from social science, urban design and environmental engineering to gain integrated insights into the opportunities for Elwood to increase its flood resilience and urban liveability. Results showed that an appropriate balance of social, infrastructural and urban design responses would be required to retreat from, accommodate and protect against flood risk. These would also deliver broader benefits such as securing water supplies through harvested stormwater and mitigating extreme heat through greener landscapes. Our interdisciplinary approach demonstrated the value of (i) engaging with the community to understand their concerns, aspirations and adaptation ideas, (ii) exploring design measures that densify and use urban forms in ways that implement adaptation measures while responding to local context, (iii) adopting modelling techniques to test the performance, robustness and economic viability of possible adaptation solutions, and (iv) innovating governance arrangements and principles needed to improve flood resilience in the Elster Creek catchment. Our research also provided valuable insight on how to operationalize interdisciplinary work in practice, highlighting the importance of sharing an impact agenda, taking a place-based approach, developing a common conceptual framework, and fostering a constructive team culture. This article is part of the theme issue 'Urban flood resilience'.
Original languageEnglish
Article number20190201
JournalPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume378
Issue number2168
Number of pages25
ISSN1364-503X
DOIs
Publication statusPublished - 2020

Bibliographical note

Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.

Cite this