An integrated workflow for stress and flow modelling using outcrop-derived discrete fracture networks - DTU Orbit (28/07/2019)

An integrated workflow for stress and flow modelling using outcrop-derived discrete fracture networks
Fluid flow in naturally fractured reservoirs is often controlled by subseismic-scale fracture networks. Although the fracture network can be partly sampled in the direct vicinity of wells, the inter-well scale network is poorly constrained in fractured reservoir models. Outcrop analogues can provide data for populating domains of the reservoir model where no direct measurements are available. However, extracting relevant statistics from large outcrops representative of inter-well scale fracture networks remains challenging. Recent advances in outcrop imaging provide high-resolution datasets that can cover areas of several hundred by several hundred meters, i.e. the domain between adjacent wells, but even then, data from the high-resolution models is often upscaled to reservoir flow grids, resulting in loss of accuracy. We present a workflow that uses photorealistic georeferenced outcrop models to construct geomechanical and fluid flow models containing thousands of discrete fractures covering sufficiently large areas, that does not require upscaling to model permeability. This workflow seamlessly integrates geomechanical Finite Element models with flow models that take into account stress-sensitive fracture permeability and matrix flow to determine the full permeability tensor. The applicability of this workflow is illustrated using an outcropping carbonate pavement in the Potiguar basin in Brazil, from which 1082 fractures are digitised. The permeability tensor for a range of matrix permeabilities shows that conventional upscaling to effective grid properties leads to potential underestimation of the true permeability and the orientation of principal permeabilities. The presented workflow yields the full permeability tensor model of discrete fracture networks with stress-induced apertures, instead of relying on effective properties as most conventional flow models do.

General information
Publication status: Published
Organisations: Centre for oil and gas – DTU, Delft University of Technology
Contributors: Bisdom, K., Nick, H., Bertotti, G.
Number of pages: 15
Pages: 21-35
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Computers & Geosciences
Volume: 103
ISSN (Print): 0098-3004
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.96 SJR 1.35 SNIP 1.599
Web of Science (2017): Impact factor 2.567
Web of Science (2017): Indexed yes
Original language: English
Keywords: Permeability tensor, Discrete fracture matrix, Aperture, Fracture permeability, Fracture networks, Fracture mechanics, Outcrop analogue modelling, Brazil
DOIs:
10.1016/j.cageo.2017.02.019
Source: FindIt
Source-ID: 2357087549
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review