An Improved On-line Contingency Screening for Power System Transient Stability Assessment

Research output: Contribution to journalJournal article – Annual report year: 2017Researchpeer-review

Documents

DOI

View graph of relations

This paper presents a contingency screening method and a framework for its on-line implementation. The proposed method carries out contingency screening and on-line stability assessment with respect to first-swing transient stability. For that purpose, it utilizes the single machine equivalent method and aims at improving the prior developed contingency screening approaches. In order to determine vulnerability of the system with respect to a particular contingency, only one time-domain simulation needs to be performed. An early stop criteria is proposed so that in a majority of the cases the simulation can be terminated after a few hundred milliseconds of simulated system response. The method's outcome is an assessment of the system's stability and a classification of each considered contingency. The contingencies are categorized by exploiting parameters of an equivalent one machine infinite bus system. A novel island detection approach, appropriate for an on-line application since it utilizes efficient algorithms from graph theory and enables stability assessment of individual islands, is also introduced. The New England and New York system as well as the large-scale model of the Continental-European interconnected system are used to test the proposed method with respect to assessment accuracy and computation time.
Original languageEnglish
JournalElectric Power Components and Systems
Volume45
Issue number8
Pages (from-to)852-863
Number of pages12
ISSN1532-5008
DOIs
Publication statusPublished - 2017
CitationsWeb of Science® Times Cited: No match on DOI
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 135020626