An electroplated copper–silver alloy as antibacterial coating on stainless steel - DTU Orbit (14/10/2019)

An electroplated copper–silver alloy as antibacterial coating on stainless steel

Transfer and growth of pathogenic microorganisms must be prevented in many areas such as the clinical sector. One element of transfer is the adhesion of pathogens to different surfaces and the purpose of the present study was to develop and investigate the antibacterial efficacy of stainless steel electroplated with a copper-silver alloy with the aim of developing antibacterial surfaces for the medical and health care sector. The microstructural characterization showed a porous microstructure of electroplated copper-silver coating and a homogeneous alloy with presence of interstitial silver. The copper-silver alloy coating showed active corrosion behavior in chloride-containing environments. ICP-MS measurements revealed a selective and localized dissolution of copper ions in wet conditions due to its galvanic coupling with silver. No live bacteria adhered to the copper-silver surfaces when exposed to suspensions of S. aureus and E. coli at a level of 10^8CFU/ml whereas 10^4CFU/cm² adhered after 24h on the stainless steel controls. In addition, the Cu-Ag alloy caused a significant reduction of bacteria in the suspensions. The coating was superior in its antibacterial activity as compared to pure copper and silver electroplated surfaces. Therefore, the results showed that the electroplated copper-silver coating represents an effective and potentially economically feasible way of limiting surface spreading of pathogens.

General information
Publication status: Published
Organisations: Department of Biotechnology and Biomedicine, Bacterial Ecophysiology and Biotechnology, Department of Mechanical Engineering, Materials and Surface Engineering, National Food Institute, Research group for Nano-Bio Science
Corresponding author: Gram, L.
Contributors: Ciacotich, N., Din, R. U., Sloth, J. J., Møller, P., Gram, L.
Pages: 96-104
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Surface and Coatings Technology
Volume: 345
ISSN (Print): 0257-8972
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 3.44 SJR 0.973 SNIP 1.435
Web of Science (2018): Impact factor 3.192
Web of Science (2018): Indexed yes
Original language: English
Keywords: Copper, Silver, Electroplating, Coating, Antibacterial
DOIs: 10.1016/j.surfcoat.2018.04.007
Source: FindIt
Source ID: 2398557283
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review