An Asynchronous-Switched-Capacitor DC-DC Converter Based on GaN and SiC Devices -
DTU Orbit (03/11/2019)

An Asynchronous-Switched-Capacitor DC-DC Converter Based on GaN and SiC Devices

For the state-of-the-art switched-capacitor DC-DC converters at high-voltage low-power levels, switching loss becomes a major concern and challenge. Existing switching schemes operate power semiconductors at a single common frequency, which does not optimally address the switching losses, especially for a high-conversion-ratio design. This paper presents a concept of Asynchronous-Switched-Capacitor (ASC), which is applied to the GaN switches that are combined with the SiC diodes to improve the efficiency and the power density. Two stages of switched-capacitors are operating with uncorrelated frequencies, without phase and clock synchronization of the control signals. A 380 V, 6 W, 4:1 conversion ratio converter experimentally validates the concept. The efficiency is improved by 4 % and the peak-to-peak output voltage ripple is reduced by 39 %, with the proposed ASC switching compared to a synchronous operation. A peak efficiency of 95.4 % is achieved.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Electronics
Pages: 95-99
Publication date: 2018

Host publication information
Title of host publication: Proceedings of 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia
Publisher: IEEE
ISBN (Print): 9781538643921
Keywords: DC-DC converter, Switched-capacitor, Multilevel, Asynchronous, Mains voltage, High characteristic impedance, Gallium nitride, Silicon carbide, Wide bandgap devices
DOIs: 10.1109/WiPDAAsia.2018.8734649
Source: PublicationPreSubmission
Source ID: 143237340
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2019 › Research › peer-review